NL2Bash: A Corpus and Semantic Parser for Natural Language Interface to the Linux Operating System

find system log files older than a month

Victoria Lin[®] Chenglong Wang[®] Luke Zettlemoyer[®] Michael D. Ernst[®] {xilin,clwang,lsz,mernst}@cs.washington.edu

Problem Definition

Problem Definition

Domain

Data-Driven Approaches

Adaptions from state-of-the-art neural machine translation models

Corpus Construction

Domain

Data-Driven Approaches

Adaptions from state-of-the-art neural machine translation models

Corpus Construction

Domain

Data-Driven Approaches

Adaptions from state-of-the-art neural machine translation models

System Performance Qualitative Analysis Live Demo

PROBLEM DEFINITION

- Natural Language → Command Translation
 - Generating one-liners
 - In most command languages complex semantics can be represented in short syntactic forms
 - Other work: code block generation (Polosukhin and Skidanov '18)
 - Single-turn interaction between the user & the system (building block for multi-turn system)
 - Other work: conversational natural language programming assistant (Pandita et. al. '18)
 - Semantic parsing can be a building block conversational programming assistant

DOMAIN - BASH

- Potentially Wide User Base
 - Most Linux users know bash, but not mastering it
- Command Interface Language
- Generalizable to other command languages

 find all '*.c' files under \$HOME directory which contain the string "Salesforce"

find "\$HOME" -name "*.c" -print0 | xargs -0 -I {} grep
"Salesforce" {}

 find all '*.c' files under \$HOME directory which contain the string "Salesforce"

find "\$HOME" -name "*.c" -print0 | xargs -0 -I {} grep
"Salesforce" {}

Head command

 find all '*.c' files under \$HOME directory which contain the string "Salesforce"

find "\$HOME" -name "*.c" -print0 | xargs -0 -I {} grep
"Salesforce" {}

 find all '*.c' files under \$HOME directory which contain the string "Salesforce"

find "\$HOME" -name "*.c" -print0 | xargs -0 -I {} grep
"Salesforce" {}

 find all '*.c' files under \$HOME directory which contain the string "Salesforce"

find "\$HOME" -name "*.c" -print0 | xargs -0 -I {} grep "Salesforce" {}

Compound Commands

- Neural Networks: Natural Language → Formal Languages
 - ✓ NL → Syntactic parse trees (Vinyals et. al. '14)
 - ✓ NL → Regular expression (Locascio et. al. '16)
 - ✓ NL → Logical forms (Li & Lapata '16)
 - ✓ NL → Python (Wang et. al. '16)
 - ✓ NL → Python (Yin & Neubig '17, Rabinovich et. al.
 '17)

Rule-Based Systems

Statistical Models over Discrete Structures

- Neural Networks: Natural Language → Formal Languages
 - ✓ NL → Syntactic parse trees (Vinyals et. al. '14)
 - ✓ NL → Regular expression (Locascio et. al. '16)
 - ✓ NL → Logical forms (Li & Lapata '16)
 - ✓ NL → Python (Wang et. al. '16)
 - ✓ NL → Python (Yin & Neubig '17, Rabinovich et. al.
 '17)

Adapted from NMT methods for natural language translation

- Neural Networks: Natural Language → Formal Languages
 - ✓ NL → Syntactic parse trees (Vinyals et. al. '14)
 - ✓ NL → Regular expression (Locascio et. al. '16)
 - ✓ NL → Logical forms (Li & Lapata '16)
 - ✓ NL → Python (Wang et. al. '16)

Seq2Tree

Seq2Seq

✓ NL → Python (Yin & Neubig '17, Rabinovich et. al.
 '17)

Expressive —> Simplest Data Representation

- Neural Networks: Natural Language → Formal Languages
 - ✓ NL → Syntactic parse trees (Vinyals et. al. '14)
 - ✓ NL → Regular expression (Locascio et. al. '16)
 - ✓ NL → Logical forms (Li & Lapata '16)
 - ✓ NL → Python (Wang et. al. '16)

Target Domain: Shallow Syntax Structure (No Formal Grammar)

Seq2Seq

SEQUENCE-TO-SEQUENCE NEURAL NETWORK

 find all '*.c' files under \$HOME directory whose content has the string "salesforce"

find "\$HOME" -name "*.c" -print0 | xargs -0 -I {} grep
"salesforce" {}

X Large number of out-of-vocabulary words (arguments)

 find all '*.c' files under \$HOME directory whose content has the string "salesforce"

find "\$HOME" -name "*.c" -print0 | xargs -0 -I {} grep
"salesforce" {}

X Large number of out-of-vocabulary words

Incorporating Copying Mechanism in Sequence-to-Sequence Learning, Gu et. al. EMNLP 2016

 find all '*.c' files under \$HOME directory whose content has the string "salesforce"

find "\$HOME" -name "*.c" -print0 | xargs -0 -I {} grep
"salesforce" {}

* Many command arguments are source tokens transformed through atomic string edits

Incorporating Copying Mechanism in Sequence-to-Sequence Learning, Gu et. al. EMNLP 2016

 find all '*.c' files under \$HOME directory whose content has the string "salesforce"

find "\$HOME" -name "*.c" -print0 | xargs -0 -I {} grep
"salesforce" {}

X Many command arguments are source tokens transformed through atomic string edits

Character models? Very long sequences...

SUB-TOKEN COPYING

 find all '*.c' files under \$ HOME directory whose content has the string " salesforce "

find " **\$ HOME** " -name " * . c " -print0 | xargs -0 -I {} grep " salesforce " {}

Split the constant tokens in both the source and target sequences into a sequence of sub-tokens consists of the following:

- 1. Consecutive sub-sequences of alphabetical letters
- 2. Consecutive sub-sequences of digits
- 3. All other special tokens

Run CopyNet on the sub-tokens

SUB-TOKEN COPYING

 find all '*.c' files under \$ HOME directory whose content has the string " salesforce "

find " **\$ HOME** " -name " * . c " -print0 | xargs -0 -I {} grep " salesforce " {}

Enables learning of

- 1. Substring addition
- 2. Substring deletion
- 3. Substring replacement
- 4. Semantics of the special characters such as "\$", quotation marks, "*", etc.

DATA COLLECTION

- Bash programmers hired Upwork[™]
- Collect bash commands and their natural language descriptions from the web

BASH COMMAND FILTERING

• Bash Command

	Single command	
In-scope	Logical connectives	&&, , ()
	Nested command	pipeline
		command substitution \$()
		process substitution <()
Out-of- scope	I/O redirection	<, <<
	Variable assignment	=
	Parameters	e.g. \$1, \$HOME
	Multi-statement	if, for, while, until, etc.
	Regex structure	e.g. x*y*
	Non-bash programs	triggered by awk, java, etc.

DATA STATISTICS

- 12,609 pairs —> 9,301 pairs after filtering
- 8,090 train, 609 dev, 606 test
- 100+ unique bash commands, 537 unique flags

TOP-50 COMMAND HISTOGRAM

TOP-50 COMMAND HISTOGRAM

EVALUATION METHODOLOGY

- Manual Evaluation (Multiple Correct Solutions)
 - 3 bash programmers (hired via **Upwork**) judged the top-3 suggestions of each test example
 - Full command correctness
 - Command template correctness

find [path] -name [regex] -print0 | xargs -0 -I {} grep [regex] {}

- Final judgement: majority vote
- Inter-annotator agreement: 0.89, 0.83, 0.80

BASELINES

- Vanilla Seq2Seq (Sutskever et. al. '14)
- CopyNet (Gu et. al. '17)
- Three-stage translation model (Lin et. al. '17)
 - 1. Convert both NL and bash command to templates
 - 2. Apply Seq2Seq translation on the templates
 - 3. Fill arguments using heuristics

SYSTEM PERFORMANCE (Dev Set) Seq2Seq CopyNet Sub-token CopyNet Stage-wise 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 Acc-F-1 Acc-F-3 Acc-T-1 Acc-T-3

SYSTEM PERFORMANCE (Dev Set)

SYSTEM PERFORMANCE (Test Set)

QUALITATIVE ANALYSIS

- Live Demo: <u>http://tellina.rocks</u>
- <u>Split '/usr/bin/gcc' into 10 files of about equal</u> <u>size</u>
- <u>Which files in the computer were modified more</u> <u>than 30 days ago and larger than 500M</u>
- Find all *company* (case-insensitive) files/ directories under /basedir with null character as the delimiter

Github: <u>https://github.com/TellinaTool</u>

Demo: <u>http://tellina.rocks</u>

- *Corpus:* 10k real-world bash commands, paired with human-written English descriptions
- Data-driven baselines: motivated by SOTA neural machine translation approaches copying, sub-token modeling
- Huge space for improvements
- To appear in LREC 2018 conference proceedings
- Contact: <u>xilin@salesforce.com</u>

BKI - SEQ2SEQ OUTPUT PROBABILITY

Generation Probability

|target vocabulary|

BKII - COPYNET OUTPUT PROBABILITY

BKIII - COPYNET (Gu et. al. 2016)

BKIV- COPYNET (Gu et. al. 2016)

BKV - SPEED-UP EXPERT SOURCING

Command2NL

Logout (victoria-lin)

mkdir join set source touch env In uname which cd	awk # urls annotated: 21	
read ssh yes basename less nl rsync zcat rev readlink	# pairs annotated: 356	
shopt paste who fold gzip seq tr whoami comm scp		
su tree mv tac jobs pwd ssh-keygen gunzip alias ⁵² nead		
cat cpio date dig export chmod dirname history kill ping		
df diff rm watch Is md5 uniq curl screen ps		
chgrp pstree cp nohup sort w bind tar wget apt-get		

Figure 2. Data Collection Interface Screenshot

BKVI - THREE-STAGE TRANSLATION APPROACH

Stage 2: NL template to program template translation