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Abstract

We present SParC, a dataset for cross-domain
Semantic Parsing in Context. It consists of
4,298 coherent question sequences (12k+ indi-
vidual questions annotated with SQL queries),
obtained from controlled user interactions
with 200 complex databases over 138 do-
mains. We provide an in-depth analysis of
SParC and show that it introduces new chal-
lenges compared to existing datasets. SParC
(1) demonstrates complex contextual depen-
dencies, (2) has greater semantic diversity, and
(3) requires generalization to new domains
due to its cross-domain nature and the un-
seen databases at test time. We experiment
with two state-of-the-art text-to-SQL mod-
els adapted to the context-dependent, cross-
domain setup. The best model obtains an
exact set match accuracy of 20.2% over all
questions and less than 10% over all inter-
action sequences, indicating that the cross-
domain setting and the contextual phenomena
of the dataset present significant challenges
for future research. The dataset, baselines,
and leaderboard are released at https://
yale-lily.github.io/sparc.

1 Introduction

Querying a relational database is often challeng-
ing and a natural language interface has long been
regarded by many as the most powerful database
interface (Popescu et al., 2003; Bertomeu et al.,
2006; Li and Jagadish, 2014). The problem of
mapping a natural language utterance into exe-
cutable SQL queries (text-to-SQL) has attracted
increasing attention from the semantic parsing
community by virtue of a continuous effort of
dataset creation (Zelle and Mooney, 1996; Iyyer
et al., 2017; Zhong et al., 2017; Finegan-Dollak
et al., 2018; Yu et al., 2018a) and the modeling
innovation that follows it (Xu et al., 2017; Wang
et al., 2018; Yu et al., 2018b; Shi et al., 2018).

 
 
 
 
 
 
 
 

 

Database about student dormitory containing 5 tables.D1 :  
Find the first and last names of the students who are livingC1 :  

        in the dorms that have a TV Lounge as an amenity. 
 

 How many dorms have a TV Lounge?Q1 :  
  SELECT  COUNT (*) FROM  dorm AS  T1 JOIN  has_amenityS1 :  

     AS  T2 ON  T1.dormid = T2.dormid JOIN  dorm_amenity 
     AS  T3 ON  T2.amenid = T3.amenid WHERE 
     T3.amenity_name = 'TV Lounge' 
 

 What is the total capacity of these dorms?Q2 :  
  SELECT  SUM (T1.student_capacity) FROM  dorm AS  T1S2 :   

     JOIN  has_amenity AS  T2 ON  T1.dormid = T2.dormid  
     JOIN  dorm_amenity AS  T3 ON  T2.amenid = T3.amenid  
     WHERE  T3.amenity_name = 'TV Lounge' 
 

 How many students are living there?Q3 :  
SELECT  COUNT (*) FROM  student AS  T1 JOIN  lives_inS3 :   

     AS  T2 ON  T1.stuid = T2.stuid WHERE  T2.dormid IN 
     ( SELECT  T3.dormid FROM  has_amenity AS  T3 JOIN  
     dorm_amenity AS  T4 ON  T3.amenid = T4.amenid WHERE  
     T4.amenity_name = 'TV Lounge') 
 

 Please show their first and last names.Q4 :  
  SELECT  T1.fname, T1.lname FROM  student AS  T1 JOINS4 :   

     lives_in AS  T2 ON  T1.stuid = T2.stuid WHERE  
     T2.dormid IN  ( SELECT  T3.dormid FROM  has_amenity 
     AS  T3 JOIN  dorm_amenity AS  T4 ON  T3.amenid =  
     T4. amenid  WHERE  T4.amenity_name = 'TV Lounge') 
 

-------------------------------------- 

 Database about shipping company containing 13 tablesD2 :  
 Find the names of the first 5 customers.C2 :  

 

 What is the customer id of the most recent customer?Q1 :  
 SELECT  customer_id  FROM  customers  ORDER BYS1 :  

     date_became_customer  DESC LIMIT  1 
 

 What is their name?Q2 :  
  SELECT  customer_name  FROM  customers  ORDER BYS2 :   

     date_became_customer  DESC LIMIT  1 
 

 How about for the first 5 customers?Q3 :  
  SELECT  customer_name  FROM  customers  ORDER BYS3 :   

     date_became_customer  LIMIT  5 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Two question sequences from the SParC
dataset. Questions (Qi) in each sequence query a
database (Dm), obtaining information sufficient to
complete the interaction goal (Cm). Each question is
annotated with a corresponding SQL query (Si). SQL
segments from the interaction context are underlined.

While most of these work focus on precisely
mapping stand-alone utterances to SQL queries,
generating SQL queries in a context-dependent
scenario (Miller et al., 1996; Zettlemoyer and
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Collins, 2009; Suhr et al., 2018) has been studied
less often. The most prominent context-dependent
text-to-SQL benchmark is ATIS1, which is set in
the flight-booking domain and contains only one
database (Hemphill et al., 1990; Dahl et al., 1994).

In a real-world setting, users tend to ask a se-
quence of thematically related questions to learn
about a particular topic or to achieve a complex
goal. Previous studies have shown that by al-
lowing questions to be constructed sequentially,
users can explore the data in a more flexible man-
ner, which reduces their cognitive burden (Hale,
2006; Levy, 2008; Frank, 2013; Iyyer et al., 2017)
and increases their involvement when interacting
with the system. The phrasing of such questions
depends heavily on the interaction history (Kato
et al., 2004; Chai and Jin, 2004; Bertomeu et al.,
2006). The users may explicitly refer to or omit
previously mentioned entities and constraints, and
may introduce refinements, additions or substitu-
tions to what has already been said (Figure 1).
This requires a practical text-to-SQL system to ef-
fectively process context information to synthesize
the correct SQL logic.

To enable modeling advances in context-
dependent semantic parsing, we introduce SParC
(cross-domain Semantic Parsing in Context),
an expert-labeled dataset which contains 4,298
coherent question sequences (12k+ questions
paired with SQL queries) querying 200 complex
databases in 138 different domains. The dataset is
built on top of Spider2, the largest cross-domain
context-independent text-to-SQL dataset available
in the field (Yu et al., 2018c). The large num-
ber of domains provide rich contextual phenom-
ena and thematic relations between the questions,
which general-purpose natural language interfaces
to databases have to address. In addition, it en-
ables us to test the generalization of the trained
systems to unseen databases and domains.

We asked 15 college students with SQL expe-
rience to come up with question sequences over
the Spider databases (§ 3). Questions in the orig-
inal Spider dataset were used as guidance to the
students for constructing meaningful interactions:
each sequence is based on a question in Spider and
the student has to ask inter-related questions to ob-

1A subset of ATIS is also frequently used in context-
independent semantic parsing research (Zettlemoyer and
Collins, 2007; Dong and Lapata, 2016).

2The data is available at https://yale-lily.
github.io/spider.

tain information that answers the Spider question.
At the same time, the students are encouraged to
come up with related questions which do not di-
rectly contribute to the Spider question so as to
increase data diversity. The questions were subse-
quently translated to complex SQL queries by the
same student. Similar to Spider, the SQL Queries
in SParC cover complex syntactic structures and
most common SQL keywords.

We split the dataset such that a database appears
in only one of the train, development and test sets.
We provide detailed data analysis to show the rich-
ness of SParC in terms of semantics, contextual
phenomena and thematic relations (§ 4). We also
experiment with two competitive baseline models
to assess the difficulty of SParC (§ 5). The best
model achieves only 20.2% exact set matching ac-
curacy3 on all questions, and demonstrates a de-
crease in exact set matching accuracy from 38.6%
for questions in turn 1 to 1.1% for questions in
turns 4 and higher (§ 6). This suggests that there is
plenty of room for advancement in modeling and
learning on the SParC dataset.

2 Related Work

Context-independent semantic parsing Early
studies in semantic parsing (Zettlemoyer and
Collins, 2005; Artzi and Zettlemoyer, 2013; Be-
rant and Liang, 2014; Li and Jagadish, 2014; Pa-
supat and Liang, 2015; Dong and Lapata, 2016;
Iyer et al., 2017) were based on small and single-
domain datasets such as ATIS (Hemphill et al.,
1990; Dahl et al., 1994) and GeoQuery (Zelle and
Mooney, 1996). Recently, an increasing number
of neural approaches (Zhong et al., 2017; Xu et al.,
2017; Yu et al., 2018a; Dong and Lapata, 2018; Yu
et al., 2018b) have started to use large and cross-
domain text-to-SQL datasets such as WikiSQL
(Zhong et al., 2017) and Spider (Yu et al., 2018c).
Most of them focus on converting stand-alone nat-
ural language questions to executable queries. Ta-
ble 1 compares SParC with other semantic parsing
datasets.

Context-dependent semantic parsing with
SQL labels Only a few datasets have been
constructed for the purpose of mapping context-
dependent questions to structured queries.

3Exact string match ignores ordering discrepancies of
SQL components whose order does not matter. Exact set
matching is able to consider ordering issues in SQL evalu-
ation. See more evaluation details in section 6.1.

https://yale-lily.github.io/spider
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Dataset Context Resource Annotation Cross-domain
SParC X database SQL X

ATIS (Hemphill et al., 1990; Dahl et al., 1994) X database SQL 7

Spider (Yu et al., 2018c) 7 database SQL X
WikiSQL (Zhong et al., 2017) 7 table SQL X

GeoQuery (Zelle and Mooney, 1996) 7 database SQL 7

SequentialQA (Iyyer et al., 2017) X table denotation X
SCONE (Long et al., 2016) X environment denotation 7

Table 1: Comparison of SParC with existing semantic parsing datasets.

Hemphill et al. (1990); Dahl et al. (1994) col-
lected the contextualized version of ATIS that
includes series of questions from users interact-
ing with a flight database. Adopted by several
works later on (Miller et al., 1996; Zettlemoyer
and Collins, 2009; Suhr et al., 2018), ATIS
has only a single domain for flight planning
which limits the possible SQL logic it contains.
In contrast to ATIS, SParC consists of a large
number of complex SQL queries (with most
SQL syntax components) inquiring 200 databases
in 138 different domains, which contributes to
its diversity in query semantics and contextual
dependencies. Similar to Spider, the databases in
the train, development and test sets of SParC do
not overlap.

Context-dependent semantic parsing with de-
notations Some datasets used in recovering
context-dependent meaning (including SCONE
(Long et al., 2016) and SequentialQA (Iyyer et al.,
2017)) contain no logical form annotations but
only denotation (Berant and Liang, 2014) instead.
SCONE (Long et al., 2016) contains some in-
structions in limited domains such as chemistry
experiments. The formal representations in the
dataset are world states representing state changes
after each instruction instead of programs or logi-
cal forms. SequentialQA (Iyyer et al., 2017) was
created by asking crowd workers to decompose
some complicated questions in WikiTableQues-
tions (Pasupat and Liang, 2015) into sequences of
inner-related simple questions. As shown in Ta-
ble 1, neither of the two datasets were annotated
with query labels. Thus, to make the tasks feasi-
ble, SCONE (Long et al., 2016) and SequentialQA
(Iyyer et al., 2017) exclude many questions with
rich semantic and contextual types. For example,
(Iyyer et al., 2017) requires that the answers to the
questions in SequentialQA must appear in the ta-
ble, and most of them can be solved by simple

SQL queries with SELECT and WHERE clauses.
Such direct mapping without formal query labels
becomes unfeasible for complex questions. Fur-
thermore, SequentialQA contains questions based
only on a single Wikipedia tables at a time. In
contrast, SParC contains 200 significantly larger
databases, and complex query labels with all com-
mon SQL key components. This requires a system
developed for SParC to handle information needed
over larger databases in different domains.

Conversational QA and dialogue system Lan-
guage understanding in context is also studied for
dialogue and question answering systems. The
development in dialogue (Henderson et al., 2014;
Mrkšić et al., 2017; Zhong et al., 2018) uses pre-
defined ontology and slot-value pairs with limited
natural language meaning representation, whereas
we focus on general SQL queries that enable
more powerful semantic meaning representation.
Recently, some conversational question answer-
ing datasets have been introduced, such as QuAC
(Choi et al., 2018) and CoQA (Reddy et al., 2018).
They differ from SParC in that the answers are
free-form text instead of SQL queries. On the
other hand, Kato et al. (2004); Chai and Jin (2004);
Bertomeu et al. (2006) conduct early studies of
the contextual phenomena and thematic relations
in database dialogue/QA systems, which we use
as references when constructing SParC.

3 Data Collection

We create the SParC dataset in four stages: select-
ing interaction goals, creating questions, annotat-
ing SQL representations, and reviewing.

Interaction goal selection To ensure thematic
relevance within each question sequence, we use
questions in the original Spider dataset as the the-
matic guidance for constructing meaningful query
interactions, i.e. the interaction goal. Each se-
quence is based on a question in Spider and the an-



Thematic relation Description Example Percentage
Refinement
(constraint refine-
ment)

The current question asks for the same
type of entity as a previous question
with a different constraint.

Prev Q: Which major has the fewest students?
Cur Q: What is the most popular one?

33.8%

Theme-entity
(topic explo-
ration)

The current question asks for other
properties about the same entity as a
previous question.

Prev Q: What is the capacity of Anonymous
Donor Hall?
Cur Q: List all of the amenities which it has.

48.4%

Theme-property
(participant shift)

The current question asks for the same
property about another entity.

Prev Q: Tell me the rating of the episode named
“Double Down”.
Cur Q: How about for “Keepers”?

9.7%

Answer refine-
ment/theme
(answer explo-
ration)

The current question asks for a subset
of the entities given in a previous an-
swer or asks about a specific entity in-
troduced in a previous answer.

Prev Q: Please list all the different department
names.
Cur Q: What is the average salary of all instruc-
tors in the Statistics department?

8.1%

Table 2: Thematic relations between questions in a database QA system defined by Bertomeu et al. (2006). The
first three relations hold between a question and a previous question and the last relation holds between a question
and a previous answer. We manually classified 102 examples in SParC into one or more of them and show the
distribution. The entities (bold), properties (italics) and constraints (underlined) are highlighted in each question.

notator has to ask inter-related questions to obtain
the information demanded by the interaction goal
(detailed in the next section). All questions in Spi-
der were stand-alone questions written by 11 col-
lege students with SQL background after they had
explored the database content, and the question in-
tent conveyed is likely to naturally arise in real-life
query scenarios. We selected all Spider examples
classified as medium, hard, and extra hard, as it is
in general hard to establish context for easy ques-
tions. In order to study more diverse information
needs, we also included some easy examples (end
up with using 12.9% of the easy examples in Spi-
der). As a result, 4,437 questions were selected as
the interaction goals for 200 databases.

Question creation 15 college students with
SQL experience were asked to come up with se-
quences of inter-related questions to obtain the
information demanded by the interaction goals4.
Previous work (Bertomeu et al., 2006) has char-
acterized different thematic relations between the
utterances in a database QA system: refinement,
theme-entity, theme-property, and answer refine-
ment/theme5, as shown in Table 2. We show
these definitions to the students prior to ques-
tion creation to help them come up with context-
dependent questions. We also encourage the for-

4The students were asked to spend time exploring
the database using a database visualization tool powered
by Sqlite Web https://github.com/coleifer/
sqlite-web so as to create a diverse set of thematic re-
lations between the questions.

5We group answer refinement and answer theme, the two
thematic relations holding between a question and a previous
answer as defined in Bertomeu et al. (2006), into a single
answer refinement/theme type.

mulation of questions that are thematically related
to but do not directly contribute to answering the
goal question (e.g. Q2 in the first example and
Q1 in the second example in Figure 1. See more
examples in Appendix as well). The students do
not simply decompose the complex query. Instead,
they often explore the data content first and even
change their querying focuses. Therefore, all in-
teractive query information in SParC could not be
acquired by a single complex SQL query.

We divide the goals evenly among the students
and each interaction goal is annotated by one stu-
dent6. We enforce each question sequence to con-
tain at least two questions, and the interaction ter-
minates when the student has obtained enough in-
formation to answer the goal question.

SQL annotation After creating the questions,
each annotator was asked to translate their own
questions to SQL queries. All SQL queries were
executed on Sqlite Web to ensure correctness. To
make our evaluation more robust, the same an-
notation protocol as Spider (Yu et al., 2018c)
was adopted such that all annotators chose the
same SQL query pattern when multiple equivalent
queries were possible.

Data review and post-process We asked stu-
dents who are native English speakers to review
the annotated data. Each example was reviewed
at least once. The students corrected any gram-
mar errors and rephrased the question in a more
natural way if necessary. They also checked if the

6The most productive student annotated 13.1% of the
goals and the least productive student annotated close to 2%.

https://github.com/coleifer/sqlite-web
https://github.com/coleifer/sqlite-web


SParC ATIS
Sequence # 4298 1658
Question # 12,726 11,653
Database # 200 1

Table # 1020 27
Avg. Q len 8.1 10.2

Vocab # 3794 1582
Avg. turn # 3.0 7.0

Table 3: Comparison of the statistics of context-
dependent text-to-SQL datasets.

questions in each sequence were related and the
SQL answers matched the semantic meaning of
the question. After that, another group of students
ran all annotated SQL queries to make sure they
were executable. Furthermore, they used the SQL
parser7 from Spider to parse all the SQL labels to
make sure all queries follow the annotation proto-
col. Finally, the most experienced annotator con-
ducted a final review on all question-SQL pairs.
139 question sequences were discarded in this fi-
nal step due to poor question quality or wrong
SQL annotations

4 Data Statistics and Analysis

We compute the statistics of SParC and conduct
a through data analysis focusing on its contex-
tual dependencies, semantic coverage and cross-
domain property. Throughout this section, we
compare SParC to ATIS (Hemphill et al., 1990;
Dahl et al., 1994), the most widely used context-
dependent text-to-SQL dataset in the field. In
comparison, SParC is significantly different as it
(1) contains mode complex contextual dependen-
cies, (2) has greater semantic coverage, and (3)
adopts a cross-domain task setting, which make
it a new and challenging cross-domain context-
dependent text-to-SQL dataset.

Data statistics Table 3 summarizes the statistics
of SParC and ATIS. SParC contains 4,298 unique
question sequences, 200 complex databases in 138
different domains, with 12k+ questions annotated
with SQL queries. The number of sequences in
ATIS is significantly smaller, but it contains a
comparable number of individual questions since
it has a higher number of turns per sequence8.

7https://github.com/taoyds/spider/
blob/master/process_sql.py

8The ATIS dataset is collected under the Wizard-of-Oz
setting (Bertomeu et al., 2006) (like a task-oriented sequen-
tial question answering task). Each user interaction is guided
by an abstract, high-level goal such as “plan a trip from city A
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Figure 2: The heatmap shows the percentage of SQL
token overlap between questions in different turns. To-
ken overlap is greater between questions that are closer
to each other and the degree of overlap increases as in-
teraction proceeds. Most questions have dependencies
that span 3 or fewer turns.

On the other hand, SParC has overcome the do-
main limitation of ATIS by covering 200 different
databases and has a significantly larger natural lan-
guage vocabulary.

Contextual dependencies of questions We vi-
sualize the percentage of token overlap between
the SQL queries (formal semantic representation
of the question) at different positions of a ques-
tion sequence. The heatmap shows that more in-
formation is shared between two questions that are
closer to each other. This sharing increases among
questions in later turns, where users tend to narrow
down their questions to very specific needs. This
also indicates that resolving context references in
our task is important.

Furthermore, the lighter color of the lower left
4 squares in the heatmap of Figure 2 shows that
most questions in an interaction have contextual
dependencies that span within 3 turns. Reddy et al.
(2018) similarly report that the majority of context
dependencies on the CoQA conversational ques-
tion answering dataset are within 2 questions, be-
yond which coreferences from the current ques-
tion are likely to be ambiguous with little inherited

to city B, stop in another city on the way”. The domain by its
nature requires the user to express multiple constraints in sep-
arate utterances and the user is intrinsically motivated to in-
teract with the system until the booking is successful. In con-
trast, the interaction goals formed by Spider questions are for
open-domain and general-purpose database querying, which
tend to be more specific and can often be stated in a smaller
number of turns. We believe these differences contribute to
the shorter average question sequence length of SParC com-
pared to that of ATIS.

https://github.com/taoyds/spider/blob/master/process_sql.py
https://github.com/taoyds/spider/blob/master/process_sql.py
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Figure 3: Percentage of question sequences that con-
tain a particular SQL keyword at a given turn. The
complexity of questions increases as interaction pro-
ceeds on SParC as more SQL keywords are triggered.
The same trend was not observed on ATIS.

information. This suggests that 3 turns on average
are sufficient to capture most of the contextual de-
pendencies between questions in SParC.

We also plot the trend of common SQL key-
words occurring in different question turns for
both SParC and ATIS (Figure 3) 9. We show the
percentage of question sequences that contain a
particular SQL keyword at each turn. The up-
per figure in Figure 3 shows that the occurrences
of all SQL keywords do not change much as the
question turn increases in ATIS, which indicates
that the SQL query logic in different turns are
very similar. We examined the data and find that
most interactions in ATIS involve changes in the
WHERE condition between question turns. This
is likely caused by the fact that the questions in
ATIS only involve flight booking, which typically
triggers the use of the refinement thematic rela-
tion. Example user utterances from ATIS are “on
american airlines” or “which ones arrive at 7pm”
(Suhr et al., 2018), which only involves changes to
the WHERE condition.

9Since the formatting used for the SQL queries are dif-
ferent in SParC and ATIS, the actual percentages of WHERE,
JOIN and Nested for ATIS are lower (e.g. the original ver-
sion of ATIS may be highly nested, but queries could be re-
formatted to flatten them). Other SQL keywords are directly
comparable.

In contrast, the lower figure demonstrates a
clear trend that in SParC, the occurrences of nearly
all SQL components increase as question turn in-
creases. This suggests that questions in subse-
quent turns tend to change the logical structures
more significantly, which makes our task more in-
teresting and challenging.

Contextual linguistic phenomena We manu-
ally inspected 102 randomly chosen examples
from our development set to study the thematic re-
lations between questions. Table 2 shows the rela-
tion distribution.

We find that the most frequently occurring re-
lation is theme-entity, in which the current ques-
tion focuses on the same entity (set) as the previ-
ous question but requests for some other property.
Consider Q1 and Q2 of the first example shown
in Figure 1. Their corresponding SQL representa-
tions (S1 and S2) have the same FROM and WHERE
clauses, which harvest the same set of entities –
“dorms with a TV lounge”. But their SELECT
clauses return different properties of the target en-
tity set (number of the dorms in S1 versus total
capacity of the dorms in S2). Q3 and Q4 in this
example also have the same relation. The refine-
ment relation is also very common. For example,
Q2 and Q3 in the second example ask about the
same entity set – customers of a shipping com-
pany. But Q3 switches the search constraint from
“the most recent” in Q2 to “the first 5”.

Fewer questions refer to previous questions
by changing the entity (“Double Down” versus
“Keepers” in Table 2) but asking for the same
property (theme-property). Even less frequently,
some questions ask about the answers of previous
questions (answer refinement/theme). As in the
last example of Table 2, the current question asks
about the “Statistics department”, which is one of
the answers returned in the previous turn. More
examples with different thematic relations are pro-
vided in Figure 5 in the Appendix.

Interestingly, as the examples in Table 2 have
shown, many thematic relations are present with-
out explicit linguistic markers. This indicates that
information tends to implicitly propagate through
the interaction. Moreover, in some cases where
the natural language question shares information
with the previous question (e.g. Q2 and Q3 in
the first example of Figure 1 form a theme-entity
relation), the corresponding SQL representations
(S2 and S3) can be very different. One scenario in



SQL components SParC ATIS
# WHERE 42.8% 99.7%

# AGG 39.8% 16.6%
# GROUP 20.1% 0.3%
# ORDER 17.0% 0.0%

# HAVING 4.7% 0.0%
# SET 3.5% 0.0%

# JOIN 35.5% 99.9%
# Nested 5.7% 99.9%

Table 4: Distribution of SQL components in SQL
queries. SQL queries in SParC cover all SQL compo-
nents, whereas some important SQL components like
ORDER are missing from ATIS.

which this happens is when the property/constraint
specification makes reference to additional enti-
ties described by separate tables in the database
schema.

Semantic coverage As shown in Table 3, SParC
is larger in terms of number of unique SQL tem-
plates, vocabulary size and number of domains
compared to ATIS. The smaller number of unique
SQL templates and vocabulary size of ATIS is
likely due to the domain constraint and presence
of many similar questions.

Table 4 further compare the formal semantic
representation in these two datasets in terms of
SQL syntax component. While almost all ques-
tions in ATIS contain joins and nested subqueries,
some commonly used SQL components are either
absent (ORDER BY, HAVING, SET) or occur very
rarely (GROUP BY and AGG). We examined the
data and find that many questions in it has com-
plicated syntactic structures mainly because the
database schema requires joined tables and nested
sub-queries, and the semantic diversity among the
questions is in fact smaller.

Cross domain As shown in Table 1, SParC con-
tains questions over 200 databases (1,020 tables)
in 138 different domains. In comparison, ATIS
contains only one databases in the flight booking
domain, which makes it unsuitable for develop-
ing models that generalize across domains. Inter-
actions querying different databases are shown in
Figure 1 (also see more examples in Figure 4 in
the Appendix). As in Spider, we split SParC such
that each database appears in only one of train, de-
velopment and test sets. Splitting by database re-
quires the models to generalize not only to new
SQL queries, but also to new databases and new
domains.

Train Dev Test
# Q sequences 3034 422 842
# Q-SQL pairs 9025 1203 2498

# Databases 140 20 40

Table 5: Dataset Split Statistics

5 Methods

We extend two state-of-the-art semantic parsing
models to the cross-domain, context-dependent
setup of SParC and benchmark their performance.
At each interaction turn i, given the current ques-
tion x̄i = 〈xi,1, . . . , xi,|x̄i|〉, the previously asked
questions Ī[: i − 1] = {x̄1, . . . , x̄i−1} and the
database schema C, the model generates the SQL
query ȳi.

5.1 Seq2Seq with turn-level history encoder
(CD-Seq2Seq)

This is a cross-domain Seq2Seq based text-to-
SQL model extended with the turn-level history
encoder proposed in Suhr et al. (2018).

Turn-level history encoder Following Suhr
et al. (2018), at turn i, we encode each user ques-
tion x̄t ∈ Ī[: t − 1] ∪ {x̄i} using an utterance-
level bi-LSTM, LSTME . The final hidden state of
LSTME , hE

t,|x̄t|, is used as the input to the turn-

level encoder, LSTMI , a uni-directional LSTM,
to generate the discourse state hI

t . The input to
LSTME at turn t is the question word embedding
concatenated with the discourse state at turn t− 1
([xt,j ,h

I
t−1]), which enables the flow of contextual

information.

Database schema encoding For each column
header in the database schema, we concate-
nate its corresponding table name and column
name separated by a special dot token (i.e.,
table name.column name), and use the av-
erage word embedding10 of tokens in this se-
quence as the column header embedding hC .

Decoder The decoder is implemented with an-
other LSTM (LSTMD) with attention to the
LSTME representations of the questions in η pre-
vious turns (η is a hyperparameter). At each de-
coding step, the decoder chooses to generate either
a SQL keyword (e.g., select, where, group
by) or a column header. To achieve this, we use

10We use the 300-dimensional GloVe (Pennington et al.,
2014) pretrained word embeddings.



separate layers to score SQL keywords and col-
umn headers, and finally use the softmax opera-
tion to generate the output probability distribution
over both categories.

5.2 SyntaxSQLNet with history input
(SyntaxSQL-con)

SyntaxSQLNet is a syntax tree based neural
model for the complex and cross-domain context-
independent text-to-SQL task introduced by Yu
et al. (2018b). The model consists of a table-aware
column attention encoder and a SQL-specific syn-
tax tree-based decoder. The decoder adopts a set
of inter-connected neural modules to generate dif-
ferent SQL syntax components.

We extend this model by providing the decoder
with the encoding of the previous question (x̄i−1)
as additional contextual information. Both x̄i and
x̄i−1 are encoded using bi-LSTMs (of different pa-
rameters) with the column attention mechanism
proposed by Yu et al. (2018b). We use the same
math formulation to inject the representations of
x̄i and x̄i−1 to each syntax module of the decoder.

More details of each baseline model can be
found in the Appendix. And we opensource their
implementations for reproducibility.

6 Experiments

6.1 Evaluation Metrics
Following Yu et al. (2018c), we use the exact set
match metric to compute the accuracy between
gold and predicted SQL answers. Instead of sim-
ply employing string match, Yu et al. (2018c)
decompose predicted queries into different SQL
clauses such as SELECT, WHERE, GROUP BY,
and ORDER BY and compute scores for each
clause using set matching separately11. We report
the following two metrics: question match, the ex-
act set matching score over all questions, and in-
teraction match, the exact set matching score over
all interactions. The exact set matching score is 1
for each question only if all predicted SQL clauses
are correct, and 1 for each interaction only if there
is an exact set match for every question in the in-
teraction.

6.2 Results
We report the overall results of CD-Seq2Seq
and SyntaxSQLNet on the development and the

11Details of the evaluation metrics can be found
at https://github.com/taoyds/spider/tree/master/
evaluation_examples

Model Question Match Interaction Match
Dev Test Dev Test

CD-Seq2Seq 17.1 18.3 6.7 6.4
SyntaxSQL-con 18.5 20.2 4.3 5.2
SyntaxSQL-sta 15.2 16.9 0.7 1.1

Table 6: Performance of various methods over all ques-
tions (question match) and all interactions (interaction
match).

test data in Table 6. The context-aware models
(CD-Seq2Seq and SyntaxSQL-con) significantly
outperforms the context-agnostic SyntaxSQLNet
(SyntaxSQL-sta). The last two rows form a con-
trolled ablation study, where without accessing to
the previous question, the test set performance of
SyntaxSQLNet decreases from 20.2% to 16.9% on
question match and from 5.2% to 1.1% on interac-
tion match, which indicates that context is a cru-
cial aspect of the problem.

We note that SyntaxSQL-con scores higher in
question match but lower in interaction match
compared to CD-Seq2Seq. A closer examination
shows that SyntaxSQL-con predicts more ques-
tions correctly in the early turns of an interaction
(Table 7), which results in its overall higher ques-
tion match accuracy. A possible reason for this
is that SyntaxSQL-con adopts a stronger context-
agnostic text-to-SQL module (SyntaxSQLNet vs.
Seq2Seq adopted by CD-Seq2Seq). The higher
performance of CD-Seq2Seq on interaction match
can be attributed to better incorporation of in-
formation flow between questions by using turn-
level encoders (Suhr et al., 2018), which is pos-
sible to encode the history of all previous ques-
tions comparing to only single one previous ques-
tion in SyntaxSQL-con. Overall, the lower per-
formance of the two extended context-dependent
models shows the difficulty of SParC and that
there is ample room for improvement.

Turn # CD-Seq2Seq SyntaxSQL-con
1 (422) 31.4 38.6
2 (422) 12.1 11.6
3 (270) 7.8 3.7
≥ 4 (89) 2.2 1.1

Table 7: Performance stratified by question turns on the
development set. The performance of the two models
decrease as the interaction continues.

Performance stratified by question position
To gain more insight into how question position
affects the performance of the two models, we re-

https://github.com/taoyds/spider/tree/master/evaluation_examples
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port their performances on questions in different
positions in Table 7. Questions in later turns of
an interaction in general have greater dependency
over previous questions and also greater risk for
error propagation. The results show that both CD-
Seq2Seq and SyntaxSQL-con consistently per-
form worse as the question turn increases, sug-
gesting that both models struggle to deal with in-
formation flow from previous questions and accu-
mulate errors. Moreover, SyntaxSQL-con signif-
icantly outperforms CD-Seq2Seq on questions in
the first turn, but the advantage disappears in later
turns (starting from the second turn), which is ex-
pected because the context encoding mechanism
of SyntaxSQL-con is less powerful than the turn-
level encoders adopted by CD-Seq2Seq.

Goal Difficulty CD-Seq2Seq SyntaxSQL-con
Easy (483) 35.1 38.9

Medium (441) 7.0 7.3
Hard (145) 2.8 1.4

Extra hard (134) 0.8 0.7

Table 8: Performance stratified by question difficulty
on the development set. The performances of the two
models decrease as questions are more difficult.

Performance stratified by SQL difficulty We
group individual questions in SParC into different
difficulty levels based on the complexity of their
corresponding SQL representations using the cri-
teria proposed in Yu et al. (2018c). As shown in
Figure 3, the questions turned to get harder as in-
teraction proceeds, more questions with hard and
extra hard difficulties appear in late turns. Table 8
shows the performance of the two models across
each difficulty level. As we expect, the models
perform better when the user request is easy. Both
models fail on most hard and extra hard questions.
Considering that the size and question types of
SParC are very close to Spider, the relatively lower
performances of SyntaxSQL-con on medium, hard
and extra hard questions in Table 8 comparing to
its performances on Spider (17.6%, 16.3%, and
4.9% respectively) indicates that SParC introduces
additional challenge by introducing context de-
pendencies, which is absent from Spider.

Performance stratified by thematic relation
Finally, we report the model performances across
thematic relations computed over the 102 exam-
ples summarized in Table 2. The results (Table
9) show that the models, in particular SyntaxSQL-
con, perform the best on the answer refine-

Thematic relation CD-Seq2Seq SyntaxSQL-con
Refinement 8.4 6.5

Theme-entity 13.5 10.2
Theme-property 9.0 7.8

answer refine./them. 12.3 20.4

Table 9: Performance stratified by thematic rela-
tions. The models perform best on the answer refine-
ment/theme relation, but do poorly on the refinement
and theme-property relations.

ment/theme relation. A possible reason for this
is that questions in the answer theme category
can often be interpreted without reference to pre-
vious questions since the user tends to state the
theme entity explicitly. Consider the example in
the bottom row of Table 2. The user explicitly said
“Statistics department” in their question, which
belongs to the answer set of the previous question
12. The overall low performance for all thematic
relations (refinement and theme-property in par-
ticular) indicates that the two models still struggle
on properly interpreting the question history.

7 Conclusion

In this paper, we introduced SParC, a large-
scale dataset of context-dependent questions over
a number of databases in different domains an-
notated with the corresponding SQL representa-
tion. The dataset features wide semantic cover-
age and a diverse set of contextual dependencies
between questions. It also introduces unique chal-
lenge in mapping context-dependent questions to
SQL queries in unseen domains. We experimented
with two competitive context-dependent semantic
parsing approaches on SParC. The model accuracy
is far from satisfactory and stratifying the perfor-
mance by question position shows that both mod-
els degenerate in later turns of interaction, sug-
gesting the importance of better context model-
ing. The dataset, baseline implementations and
leaderboard are publicly available at https://
yale-lily.github.io/sparc.
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A Appendices

A.1 Additional Baseline Model Details
CD-Seq2Seq We use a bi-LSTM, LSTME , to
encode the user utterance at each turn. At each
step j of the utterance, LSTME takes as input the
word embedding and the discourse state hI

i−1 up-
dated for the previous turn i− 1:

hE
i,j = LSTME([xi,j ;h

I
i−1],hE

i,j−1)

where i is the index of the turn and j is the in-
dex of the utterance token. The final hidden state
LSTME is used as the input of a uni-directional
LSTM, LSTMI , which is the interaction level en-
coder:

hI
i = LSTMI(hE

|xi|,h
I
i−1).

For each column header, we concate-
nate its table name and its column name
separated by a special dot token (i.e.,
table name.column name), and the column
header embedding hC is the average embeddings
of the words.

The decoder is implemented as another LSTM
with hidden state hD. We use the dot-product
based attention mechanism to compute the con-
text vector. At each decoding step k, we compute
attention scores for all tokens in η previous turns
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(we use η = 5) and normalize them using soft-
max. Suppose the current turn is i, and consider
the turns of 0, . . . , η − 1 distance from turn i. We
use a learned position embedding φI(i − t) when
computing the attention scores. The context vec-
tor is the weighted sum of the concatenation of the
token embedding and the position embedding:

sk(t, j) = [hE
t,j ;φ

I(i− t)]Watth
D
k

αk = softmax(sk)

ck =

i∑
t=i−h

|xt|∑
j=1

αk(t, j)[hE
t,j ;φ

I(i− t)]

At each decoding step, the sequential de-
coder chooses to generate a SQL keyword (e.g.,
select, where, group by, order by) or a
column header. To achieve this, we use separate
layers to score SQL keywords and column head-
ers, and finally use the softmax operation to gen-
erate the output probability distribution:

ok = tanh([hD
k ; ck]Wo)

mSQL = okWSQL + bSQL

mcolumn = okWcolumnh
C

P (yk) = softmax([mSQL;mcolumn])

It’s worth mentioning that we experimented
with a SQL segment copying model similar to the
one proposed in Suhr et al. (2018). We implement
our own segment extraction procedure by extract-
ing SELECT, FROM, GROUP BY, ORDER BY
clauses as well as different conditions in WHERE
clauses. In this way, we can extract 3.9 segments
per SQL on average. However, we found that
adding segment copying does not significantly im-
prove the performance because of error propaga-
tion. Better leveraging previously generated SQL
queries remains an interesting future direction for
this task.

SyntaxSQL-con As in (Yu et al., 2018b), the
following is defined to compute the conditional
embedding H1/2 of an embedding H1 given an-
other embedding H2:

H1/2 = softmax(H1WH>2 )H1.

Here W is a trainable parameter. In addition, a
probability distribution from a given score matrix
U is computed by

P(U) = softmax (Vtanh(U)) ,

where V is a trainable parameter. To incorpo-
rate the context history, we encode the question
right before the current question and add it to
each module as an input. For example, the COL
module of SyntaxSQLNet is extended as follow-
ing. HPQ denotes the hidden states of LSTM on
embeddings of the previous one question and the
Wnum

3 Hnum
PQ/COL

> and Wval
4 Hval

PQ/COL
> terms add

history information to prediction of the column
number and column value respectively.

P num
COL = P

(
Wnum

1 Hnum
Q/COL

> + Wnum
2 Hnum

HS/COL
> + Wnum

3 Hnum
PQ/COL

>
)

P val
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(
Wval

1 Hval
Q/COL
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A.2 Additional Data Examples
We provide additional SParC examples in Figure 4
and examples with different thematic relations in
Figure 5.



 
 
 

 

Database about wine.D3 :  
Find the county where produces the most number of wines with score higher than 90.C4 :  

 

 How many different counties are all wine appellations from?Q1 :  
  SELECT COUNT(DISTINCT county) FROM appellationsS1 :  

 

 How many wines does each county produce?Q2 :  
  SELECT T1.county, COUNT(*) FROM appellations AS T1 JOIN wine AS T2 ON T1.appellation = T2.appellationS2 :  

GROUP BY T1.county 
 

 Only show the counts of wines that score higher than 90?Q3 :  
SELECT T1.county, COUNT(*) FROM appellations AS T1 JOIN wine AS T2 ON T1.appellation = T2.appellationS3 :                 

WHERE T2.score > 90 GROUP BY T1.county 
 

 Which county produced the greatest number of these wines?Q4 :  
  SELECT T1.county FROM appellations AS T1 JOIN wine AS T2 ON T1.appellation = T2.appellation WHERES4 :  

T2.score > 90 GROUP BY T1.county ORDER BY COUNT(*) DESC LIMIT 1 
 

-------------------------------------- 
 

 Database about districtsD5 :  
 Find the names and populations of the districts whose area is greater than the average area.C5 :  

 

 What is the total district area?Q1 :  
 SELECT sum(area_km) FROM districtS1 :  

 

 Show the names and populations of all the districts.Q2 :  
  SELECT name, population FROM districtS2 :  

 

 Excluding those whose area is smaller than or equals to the average area.Q3 :  
  SELECT name, population FROM district WHERE area_km > (SELECT avg(area_km) FROM district)S3 :  

 
-------------------------------------- 
 

 Database about booksD6 :  
 Find the title, author name, and publisher name for the top 3 best sales books.C6 :  

 

 Find the titles of the top 3 highest sales books.Q1 :  
 SELECT title FROM book ORDER BY sale_amount DESC LIMIT 3S1 :  

 

 Who are their authors?Q2 :   
  SELECT t1.name FROM author AS t1 JOIN book AS t2 ON t1.author_id = t2.author_id ORDER BYS2 :  

t2.sale_amount DESC LIMIT 3 
 

 Also show the names of their publishers.Q3 :  
  SELECT t1.name, t3.name FROM author AS t1 JOIN book AS t2 ON t1.author_id = t2.author_id JOIN press ASS3 :  

t3 ON t2.press_id = t3.press_id ORDER BY t2.sale_amount DESC LIMIT 3 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: More examples in SParC.

 

 

 Database about school departmentsD7 :  
 What are the names and budgets of the departments with average instructor salary greater than the overall average?C7 :  

 

 Please list all different department names.Q1 :  
 SELECT DISTINCT dept_name FROM departmentS1 :  

 

 Show me the budget of the Statistics  department. (Theme/refinement-answer)Q2 :  
  SELECT budget FROM department WHERE dept_name = "Statistics"S2 :  

 

 What is the average salary of instructors in that department? (Theme-entity)Q3 :  
  SELECT AVG(T1.salary)FROM instructor as T1 JOIN department as T2 ON T1.department_id = T2.id WHERES3 :  

T2.dept_name = "Statistics" 

 How about for all the instructors ? (Refinement)Q4 :  
 SELECT AVG(salary) FROM instructorS4 :  

 

 Could you please find the names of the departments with average instructor salary less than that?Q5 :  
(Theme/refinement-answer) 

  SELECT T2.dept_name FROM instructor as T1 JOIN department as T2 ON T1.department_id = T2.id GROUP BYS5 :  
T1.department_id HAVING AVG(T1.salary) < (SELECT AVG(salary) FROM instructor) 
 

 Ok, how about those above the overall average? (Refinement)Q6 :  
  SELECT T2.dept_name FROM instructor as T1 JOIN department as T2 ON T1.department_id = T2.id GROUP BYS6 :  

T1.department_id HAVING AVG(T1.salary) > (SELECT AVG(salary) FROM instructor) 

 Please show their budgets  as well. (Theme-entity)Q7 :  
  SELECT T2.dept_name, T2.budget FROM instructor as T1 JOIN department as T2 ON T1.department_id = T2.idS7 :  

GROUP BY T1.department_id HAVING AVG(T1.salary) > (SELECT AVG(salary) FROM instructor) 
 

 

 Figure 5: Additional example in SParC annotated with different thematic relations. Entities (purple), properties
(magenta), constraints (red), and answers (orange) are colored.


