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Abstract

In many multi-label learning problems, especially as the number of labels grow, it is challeng-
ing to gather completely annotated data. This work presents a new approach for multi-label
learning from incomplete annotations. The main assumption is that because of label correla-
tion, the true label matrix as well as the soft predictions of classifiers shall be approximately
low rank. We introduce a posterior regularization technique which enforces soft constraints on
the classifiers, regularizing them to prefer sparse and low-rank predictions. Avoiding strict low-
rank constraints results in classifiers which better fit the real data. The model can be trained
efficiently using EM and stochastic gradient descent. Experiments in both the image and text
domains demonstrate the contributions of each modeling assumption and show that the pro-
posed approach achieves state-of-the-art performance on a number of challenging datasets.

1 Introduction

In multi-label classification, the goal is to assign a set of labels to each data point. In many such
problems, especially as the number of labels grows, it is challenging to gather completely annotated
data. For example, consider the commonly studied delicious dataset [15] where the goal is to predict
which of nearly 1,000 common tags (e.g., “wiki” or “history”) can be assigned to a web page.
Although delicious users tag sites regularly, providing positive labels, no effort is made to ensure
completeness. Such missing labels are common in many domains, ranging from image annotation
to protein function prediction, and provide a challenge for learning.

The missing-label problem has been widely known among the community. Previous work have
addressed it the following ways. (1) Cost-sensitive learning assigns higher penalties to false neg-
atives than false positives [4]. In particular, SVM-VT [16] extends this idea by adding a tolerance
parameter in the hinge loss to errors caused by missing synonyms and hypernyms. (2) Learning
to rank encourages classifiers to rank the observed labels higher than the rest [18, 4]. The implicit
assumption is that labels tagged by users are more important, while the relative importance of the
unobserved labels is uninformed, on which the classifiers are not forced to make a decision. (3)
Leveraging label correlation let the decisions over different labels interfere by either regularizing
the model parameters, e.g., applying the low-rank constraint [12, 20] or explicitly modeling pair-
wise correlations [9, 2]. (4) Instance-based learning propagate labels from annotated instances to
the new ones based on similarities in the feature/label space or both [8, 19].

Our approach starts from modeling the patterns that the ideal labelings of such problems should
have. First, we expect the assigned labels to be sparse, since on average each instance is associated
with a small subset of the possible labels. Second, labels are correlated and groups of labels tend to
co-occur, for example “train” and “railroad” are likely to appear together in images. Hence we also
expect a complete label matrix to be approximately low-rank. Such correlations might be concealed
if all the missing labels are treated as negative annotations. Our objective is to train an inductive
classifier using both the provided labels and the structural assumptions. Following recent work on
posterior regularization [6], we formulate the sparse and low-rank assumptions as soft constraints
on the classification posterior, regularizing it to be close to a low-rank and sparse factorization of
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the observed label matrix. Our method for achieving this goal can also be seen as jointly optimizing
model training and label completion, with the two components mutually benefit each other.

Compared to previous work which introduces strict low-rank parameters [20], our model performs
superior in terms of F1-measure. We believe this comes from the benefits of learning label corre-
lations from the factorized label matrix without changing the original model parameterization. The
posterior-regularized model also performs much better than the baseline that does the low-rank and
sparse factorization and learning in a stage-wise manner, confirming previous research that label
matrix factorization can benefit from instance features as side information [19]. It also shows that
although the label matrix factorization acts as an effective posterior regularizer, it cannot substitute
the gold labels, i.e. the beliefs of the learners w.r.t. the gold labels shall not be softened.

2 Model

We assume access to a training data set with N examples {(x1,y1), . . . , (xN ,yN )}. For a problem
with L possible labels, yij = 1 if data point i is tagged with label j; yij = 0 otherwise. We represent
the example features and labels as matrices X and Y , of dimensionsN×D andN×L, respectively.
Let O ⊆ {1 . . . N} × {1 . . .L} be the index set of observed labels in Y . We also assume that Y
contains missing labels, such that some of the 0’s in Y have high probability of being 1.

2.1 Probabilistic Classifier

We will learn a classifier Pθ : RD → (0, 1)L, where Pθ(xi, j) is the predicted probability that yji
is 1. Here we use the binary relevance (BR) model with logistic regression [14] to define Pθ. The
BR model uses independent logistic regression classifiers for each label in {1 . . .L}. The resulting
parameters θ can be represented as matrix of size D × L and Pθ(x) = sigm(x× θ), where sigm(v)
is the element-wise sigmoid function ( 1

1+e−v ). The likelihood of the model factors over labels:

L(Yi, Pθ(xi)) =

L∑
j=1

L(Yij , Pθ(xi, j)), where L(y, p) = − log
(
py(1− p)1−y

)
(1)

If Y is only partially observed, as marked by an index set O, we can rewrite the objective as below,
where O consists of all the labels provided by the annotators.

min
θ

∑
(i,j)∈O

L(Yij , Pθ(xi, j)) + λP ||θ||22 (2)

2.2 Sparse and Low-rank Factorization

The missing labels to deal with are one-sided: all positive annotations Yij = 1 can be trusted, but
Yij = 0 should not be directly used as negative annotations. Hence to predict the true label structure
of an item, we need to identify which of the missing cells are false negatives due to annotation noise.

Let Q be the belief matrix that captures the factorization of the labels, which is N × L in size, and
each Qij ∈ [0, 1] is the probability that item i gets label j. Based on the structural assumptions
introduced in § 1, Q is a sparse and low-rank matrix close to Y . The objective for computing Q is:

min
U ,V

∑
(i,j)∈O

L(Yij ,Qij) + λQ|Q |+λU ||U ||22+λV ||V ||22 (3)

where Qij = sigm(Ui ·Vj) and U , V are N ×K and L×K sized matrices (K << L,N ). L is the
negative log-likelihood as defined in Eq. 1. λQ|Q | is the L1 regularization that encourages sparsity.

2.3 Joint Inference via Posterior Regularization

To allow the structural assumptions about the label matrix to influence supervision, and to leverage
feature information for label completion, we need to enforce consistency between Pθ and Q . We
introduce the following objective that minimizes the KL divergence between them, which is defined
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Table 1: Example-averaged and label-averaged F1-measures of the methods on full annotations.
bibex delicious bookmarks eurlex iaprtc12 espgame

Exp Lab Exp Lab Exp Lab Exp Lab Exp Lab Exp Lab

BR 37.2 26.8 26.5 10.2 30.7 21.9 43.0 28.8 44.1 20.9 28.2 20.8
LPOS 43.9 37.0 29.0 12.0 34.6 24.3 33.3 27.7 40.4 21.6 27.9 21.1
TC 37.7 30.0 27.8 5.6 30.3 20.2 39.4 26.7 45.3 21.4 29.6 21.1
LEML 39.0 28.3 35.3 9.7 31.0 13.1 43.9 18.9 44.5 15.8 25.5 9.6
PRLR 44.2 37.2 33.3 12.0 34.9 23.0 40.2 29.7 40.1 27.2 28.6 22.2

as the sum of the element-wise Bernoulli divergences, i.e. KL(Q ‖ Pθ) =
∑N
i=1

∑L
j=1 KL(Qij ‖

Pθ(xi, j)). The joint objective is then:

min
U ,V ,θ

KL(Q ‖ Pθ) + βP
∑

(i,j)∈O

L(Yij , Pθ(xi, j)) + λP |Pθ|+λθ||θ||22

+
∑

(i,j)∈O

L(Yij ,Qij) + λQ|Q |+λU ||U ||22+λV ||V ||22. (4)

Here βP , λP , λQ are the problem-specific hyperparameters and λθ, λU , λV are regularization con-
stants. βP specifies the tradeoff between learning from the encoding distribution (Q) and the ob-
served labels (Yij , (i, j) ∈ O). λP , λQ control the sparsity of Pθ andQ, respectively. An illustration
of the joint model is shown in the supplementary material.

3 Experiments

Datasets We use six benchmark multi-label learning datasets1 with medium to large number of
labels. Four of the datasets are from the text labeling domain (bibtex, delicious, bookmarks, eurlex)
and the rest two are from the image annotation domain (corel5k, espgame). To further measure the
influence of learning with partial labels, we also randomly partitioned the positive labels of each
dataset into five subsets, and train classifiers with 20%, 40%, 60%, and 80% of the given labels. The
classifiers trained this way are evaluated against all labels.

We compare our method (PRLR, for Posterior-Regularized Low-Rank) with four baselines. BR,
LPOS and TC are proposed to measure the performance of the classifier with certain modeling as-
sumptions removed. LEML is a state-of-the-art large-scale multi-label learning algorithm leveraging
label correlations. We tune all the hyper-parameters based on a held-out validation dataset.

• BR, the naive binary relevance model [14], consists of an independent logistic regression classifier
for each label, using all examples with that label as positive examples and the rest as negative.

• LPOS, or Learning from Positives Only with Sparsity, trains a logistic regression classifier for
each label independently, with the loss only defined over the observed labels (similar to [1, 3, 4]).
In addition we include an L1-norm regularization on the posterior to enforce sparsity.

• TC, or Tag Completion, first factorizes the label matrix via the optimization program described in
Eq. 3, followed by training a BR model with the completed label matrix Q.

• LEML, or Low rank Empirical risk minimization for Multi-Label Learning [20] learns a multi-
label classifier parameterized by θ that minimizes the empirical loss under the constraint that θ is
low-rank. We reimplemented their algorithm ourselves. and obtains top-k accuracy within 1% of
those reported in the original paper.

Results over complete annotations Table 1 presents the evaluation results of PRLR in compari-
son to the four baselines (BR, LPOS, TC and LEML) for the full labels setting. PRLR consistently
performs well on all the datasets. Moreover, it has the effect of boosting recall and label coverage
significantly while maintaining good precision.2

1The text datasets are available on http://mulan.sourceforge.net and the image datasets
on http://lear.inrialpes.fr/data.

2Since the benchmark datasets may also suffer from missing labels, we are under-estimating precision and
over-estimating recall. Nevertheless, the relative difference between the models are still informative.
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(a) Bibtex
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(b) Delicious
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(c) Corel5k
Figure 1: Comparison of PRLR (magenta curve) with baselines over partial annotations on bibtex,
delicious and corel5k.

Among the three baselines, BR in general achieves high precision but suffers a much lower recall,
confirming that the naive classifiers are sensitive to the label bias. LPOS performs better than BR
on text but worse on the image datasets. On the other hand, learning from the completed labels (TC)
marginally improves or is worse than BR on text, but performs well for images.

Interestingly, it appears that the performances of LPOS and TC are complementary to each other.
For datasets where learning with positives only does poorly, the annotations provided are not de-
scriptive enough hence label completion is necessary; on the other hand, the fact that learning with
positives only performs strongly indicates that the annotations are indeed complete and adding the
TC component may generate false positives that hurts the training. PRLR, on the other hand, is able
to take advantage of both approaches.

The variation of the performances of LPOS and TC on the text datasets vs. the image datasets seems
to indicate that the text datasets are in general more ”complete” than the image datasets. By manually
examing the label space of these datasets we found that the labels of the text datasets contains
more ”categorical” words (”branding”, ”coding”, ”communication”,”creativity”, etc.), while a large
proportion of the labels for the image datasets correspond to physical objects and their properties
(”dog”, ”flower”, ”girl”, ”red”, ”branch”), which are more likely to be ignored.

LEML achieves the best example averaged F1-measure on delicious and eurlex, the datasets that
have the largest number of possible labels among the ones we choose to test on. In such problems, as
the label space grows, the correlation between labels becomes more significant; thus the parameter
matrix of a linear prediction model is likely to have low-rank structure, and exact factorization
methods will perform well. However, it in general suffers from low label-averaged metrics.

Results over partial annotations Figure 1 shows the change of label-averaged F1-measures as
the proportion of revealed labels, denoted by η, varies among 20%, 40%, 60%, 80%, 100%. The
performances of all methods increase as more labels are revealed. The slope of the LEML curve is
much different from the rest since we are taking top-k predictions of this method while using a 0.5
score threshold for the others. We observed that PRLR and LPOS in general performs better than
BR and TC as η changes. The performance of LPOS and PRLR is very close on bibtex, with LPOS
slightly better when very small proportion of the labels are revealed. On delicious, the difference
is more clear when η < 1 On corel5k, the image annotation dataset, PRLR outperforms the other
method by a large margin.

4 Conclusions
Most large-scale multi-label learning problems today have label space that spans a large number of
natural language words. Generating complete annotated data for these problems are difficult. We
presented a new approach for multi-label learning from incomplete annotations. By incorporating
soft posterior constraints, we encourage probabilistic predictions that are low-rank and sparse (after
thresholding), which results in more effective classification models. Experiments in the image and
text domains demonstrated the contributions of each modeling assumption. Our learning approach
was general, in that it is possible to change the family of prediction models and the posterior con-
straints to allow more sophisticated modeling. It would be interesting to study the effect of posterior
regularization for other types of ML models, such as neural networks.
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Table 2: Dataset Statistics: We show the number of training (N ) and test (#test) items, number of
features (D), number of labels (L) and the average number of labels per example le.

Dataset N #test D L le
bibtex 4,880 2,515 1,836 159 2.40
delicious 12,920 3,185 500 983 19.02
bookmarks 60,000 27,856 2,150 208 2.03
eurlex 17,413 1,935 5,000 3,993 5.32
corel5k 4,500 499 37,152 260 3.52
espgame 18,689 2,081 37,152 268 4.70

A Dataset Description

The datasets include:

bibtex [10] contains metadata for bibtex items, such as the title of the paper, the authors, venue,
etc. The tags are provided by users through the Bibsonomy system (http://www.bibsonomy.
org).

bookmarks [10] contains metadata for bookmark items like the URL of the web page. The tags are
provided by users through Bibsonomy.

delicious [15] contains the text content of web pages. The tags are acquired from Delicious
(https://delicious.com), a social bookmarking website.

corel5K [5] contains images from the larger Corel CD set. Each image is annotated with an average
of 3.5 keywords, and the keywords that appear in both the train and the test set are used as tags.

iaprtc-12 [7] contains images of natural scenes that include cities, landscapes, people, animals,
different sports and actions, and many other aspects of contemporary life. The tags are compiled
from free-flowing text captions.

espgame [17] contains a variety of images collected from the ESP collaborative image tagging task.
During the game, labels assigned to an image by two players without communicating are accepted
as its tags, resulting in a challenging dataset for automatic labeling.

A summary of the statistics of the datasets is provided in table 2.

B Posterior Regularization Low-rank

Figure 2: Three NL-sized matrices in our formulation that are constrained to be close: (a) a sparse
set of annotations Y such that only the provided labels are used for training, (b) a low-rank, sparse
completion of the labels Q represented by rank-K matrices U and V , and (c) posteriors of an
inductive probabilistic model Pθ that uses parameter matrix θ to predict the labels given features X .
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