
Multi-Hop Knowledge Graph Reasoning with Reward Shaping

Xi Victoria Lin Richard Socher Caiming Xiong
Salesforce Research

{xilin,rsocher,cxiong}@salesforce.com

Abstract

Multi-hop reasoning is an effective approach
for query answering (QA) over incomplete
knowledge graphs (KGs). The problem can be
formulated in a reinforcement learning (RL)
setup, where a policy-based agent sequentially
extends its inference path until it reaches a
target. However, in an incomplete KG en-
vironment, the agent receives low-quality re-
wards corrupted by false negatives in the train-
ing data, which harms generalization at test
time. Furthermore, since no golden action se-
quence is used for training, the agent can be
misled by spurious search trajectories that in-
cidentally lead to the correct answer. We pro-
pose two modeling advances to address both
issues: (1) we reduce the impact of false nega-
tive supervision by adopting a pretrained one-
hop embedding model to estimate the reward
of unobserved facts; (2) we counter the sen-
sitivity to spurious paths of on-policy RL by
forcing the agent to explore a diverse set of
paths using randomly generated edge masks.
Our approach significantly improves over ex-
isting path-based KGQA models on several
benchmark datasets and is comparable or bet-
ter than embedding-based models.

1 Introduction

Large-scale knowledge graphs (KGs) support a
variety of downstream NLP applications such as
semantic search (Berant et al., 2013) and dialogue
generation (He et al., 2017). Whether curated au-
tomatically or manually, practical KGs often fail
to include many relevant facts. A popular ap-
proach for modeling incomplete KGs is knowl-
edge graph embeddings, which map both entities
and relations in the KG to a vector space and
learn a truth value function for any potential KG
triple parameterized by the entity and relation vec-
tors (Yang et al., 2014; Dettmers et al., 2018).
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Figure 1: Example of an incomplete knowledge graph
which contains missing links (dashed lines) that can
possibly be inferred from existing facts (solid lines).

Embedding based approaches ignore the sym-
bolic compositionality of KG relations, which
limit their application in more complex rea-
soning tasks. An alternative solution for KG
reasoning is to infer missing facts by synthe-
sizing information from multi-hop paths, e.g.
bornIn(Obama, Hawaii) ∧ locatedIn(Hawaii, US)
⇒ bornIn(Obama, US), as shown in Figure 1.
Path-based reasoning offers logical insights of the
underlying KG and are more directly interpretable.
Early work treats it as a link prediction prob-
lem and perform maximum-likelihood classifica-
tion over either discrete path features (Lao et al.,
2011, 2012; Gardner et al., 2013) or their hidden
representations in a vector space (Guu et al., 2015;
Toutanova et al., 2016; Das et al., 2017).

More recent work formulates multi-hop reason-
ing as a sequential decision problem, and lever-
ages reinforcement learning (RL) to perform ef-
fective path search (Xiong et al., 2017; Das et al.,
2018; Shen et al., 2018; Chen et al., 2018). In par-
ticular, MINERVA (Das et al., 2018) uses the RE-
INFORCE algorithm (Williams, 1992) to train an
end-to-end model for multi-hop KG query answer-
ing: given a query relation and a source entity, the
trained agent searches over the KG starting from
the source and arrives at the candidate answers
without access to any pre-computed paths.
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Figure 2: Percentage of false negatives hit (where the
model predicted an answer that exists in the full KG but
cannot be identified by the training subset) in the first
20 epochs of walk-based QA training on the UMLS
knowledge graph (Kok and Domingos, 2007).

We refer to the RL formulation adopted by
MINERVA as “learning to walk towards the an-
swer” or “walk-based query-answering (QA)”.
Walk-based QA eliminates the need to pre-
compute path features, yet this setup poses sev-
eral challenges for training. First, because prac-
tical KGs are intrinsically incomplete, the agent
may arrive at a correct answer whose link to the
source entity is missing from the training graph
without receiving any reward (false negative tar-
gets, Figure 2). Second, since no ground truth
path is available for training, the agent may tra-
verse spurious paths that lead to a correct answer
only incidentally (false positive paths). Because
REINFORCE (Williams, 1992) is an on-policy RL
algorithm (Sutton and Barto, 1998) which encour-
ages past actions with high reward, it can bias the
policy toward spurious paths found early in train-
ing (Guu et al., 2017).

We propose two modeling advances for RL ap-
proaches in the walk-based QA framework to ad-
dress the aforementioned problems. First, in-
stead of using a binary reward based on whether
the agent has reached a correct answer or not,
we adopt pre-trained state-of-the-art embedding-
based models (Dettmers et al., 2018; Trouillon
et al., 2016) to estimate a soft reward for target
entities whose correctness cannot be determined.
As embedding-based models capture link seman-
tics well, unobserved but correct answers would
receive a higher reward score compared to a true
negative entity using a well-trained model. Sec-
ond, we perform action dropout which randomly
blocks some outgoing edges of the agent at each
training step so as to enforce effective exploration
of a diverse set of paths and dilute the negative im-
pact of the spurious ones. Empirically, our over-
all model significantly improves over state-of-the-

art multi-hop reasoning approaches on four out
of five benchmark KG datasets (UMLS, Kinship,
FB15k-237, WN18RR). It is also the first path-
based model that achieves consistently compara-
ble or better performance than embedding-based
models. We perform a thorough ablation study and
result analysis, demonstrating the effect of each
modeling innovation.

2 Approach

In this section, we first review the walk-based QA
framework (§2.2) and the on-policy reinforcement
learning approach proposed by Das et al. (2018)
(§2.3,§2.4). Then we describe our proposed so-
lutions to the false negative reward and spurious
path problems: knowledge-based reward shaping
(§2.5) and action dropout (§2.6).

2.1 Formal Problem Definition

We formally represent a knowledge graph as G =
(E ,R), where E is the set of entities and R is the
set of relations. Each directed link in the knowl-
edge graph l = (es, r, eo) ∈ G represents a fact
(also called a triple).

Given a query (es, rq, ?), where es is the source
entity and rq is the relation of interest, the goal
is to perform an efficient search over G and col-
lect the set of possible answers Eo = {eo} where
(es, rq, eo) /∈ G due to incompleteness.

2.2 Reinforcement Learning Formulation

The search can be formulated as a Markov De-
cision Process (MDP) (Sutton and Barto, 1998):
starting from es, the agent sequentially selects an
outgoing edge l and traverses to a new entity until
it arrives at a target. Specifically, the MDP consists
of the following components (Das et al., 2018).

States Each state st = (et, (es, rq)) ∈ S is a
tuple where et is the entity visited at step t and
(es, rq) are the source entity and query relation. et
can be viewed as the state-dependent information
while (es, rq) are the global context shared by all
states.

Actions The set of possible actions At ∈ A at
step t consists of the outgoing edges of et in G,
i.e., At = {(r′, e′)|(et, r′, e′) ∈ G}. To give the
agent the option to terminat a search, a self-loop
edge is added to every At. When search is unrolled
for a fixed number of steps T , the self-loop acts
similarly to a “stop” action.



Transition A transition function δ : S×A → S
is defined by δ(st, At) = δ(et, (es, rq), At). In
walk-based QA, the transition is determined by G.

Rewards In the default formulation, the agent
receives a terminal reward of 1 if it arrives at a
correct target entity when search ends and 0 other-
wise.

Rb(sT ) = 1{(es, rq, eT ) ∈ G}. (1)

2.3 Policy Network
The search policy is parameterized using state in-
formation and global context, plus the search his-
tory (Das et al., 2018).

Specifically, every entity and relation in G is
assigned a dense vector embedding e ∈ Rd and
r ∈ Rd. A particular action at = (rt+1, et+1) ∈
At is represented as the concatenation of the edge
relation embedding and the end node embedding
at = [rt+1; et+1].

The search history ht =
(es, r1, e1, . . . , rt, et) ∈ H consists of the
sequence of actions taken up to step t, and can be
encoded using an LSTM:

h0 = LSTM(0, [r0; es]) (2)

ht = LSTM(ht−1,at−1), t > 0, (3)

where r0 is a special start relation introduced to
form a start action with es.

The action space At is encoded by stacking the
embeddings of all actions in it: At ∈ R|At|×2d.
And the policy network π is defined as:

πθ(at|st) = σ(At ×W2 ReLU(W1[et;ht; rq])),
(4)

where σ is the softmax operator.

2.4 Optimization
The policy network is trained by maximizing the
expected reward over all queries in G:

J(θ) = E(es,r,eo)∈G [Ea0,...,aT−1∼πθ
[R(sT )]].

(5)
The optimization is done using the REIN-
FORCE (Williams, 1992) algorithm, which iter-
ates through all (es, r, eo) triples in G1 and updates

1This training strategy treats a query with n > 1 an-
swers as n single-answer queries. In particular, given a query
(es, rq, ?) with multiple answers {et1 , . . . etn}, when train-
ing w.r.t. the example (es, rq, eti), MINERVA removes all
{etj |j ̸= i} observed in the training data from the possible
set of target entities in the last search step so as to force the
agent to walk towards eti . We adopt the same technique in
our training.

θ with the following stochastic gradient:

∇θJ(θ) ≈ ∇θ

∑
t≥0

R(sT ) log πθ(at|st). (6)

2.5 Knowledge-Based Reward Shaping
According to Equation 1, the agent receives a bi-
nary reward based solely on the observed answers
in G. However, G is intrinsically incomplete and
this approach penalizes the false negative search
attempts identically to true negatives. To allevi-
ate this problem, we adopt existing KG embedding
models designed for the purpose of KG comple-
tion (Trouillon et al., 2016; Dettmers et al., 2018)
to estimate a soft reward for target entities whose
correctness is unknown.

Formally, the embedding models map E and R
to a vector space, and estimate the likelihood of
each fact l = (es, r, et) ∈ G using f(es, r, et),
a composition function of the entity and relation
embeddings. f is trained by maximizing the like-
lihood of all facts in G. We propose the following
reward shaping strategy (Ng et al., 1999):

R(sT ) = Rb(sT ) + (1−Rb(sT ))f(es, rq, eT ).
(7)

Namely, if the destination eT is a correct answer
according to G, the agent receives reward 1. Oth-
erwise the agent receives a fact score estimated by
f(es, rq, eT ), which is pre-trained. Here we keep
f in its general form and it can be replaced by
any state-of-the-art model (Trouillon et al., 2016;
Dettmers et al., 2018) or ensemble thereof.

2.6 Action Dropout
The REINFORCE training algorithm performs on-
policy sampling according to πθ(at|st), and up-
dates θ stochastically using Equation 6. Because
the agent does not have access to any oracle path, it
is possible for it to arrive at a correct answer eo via
a path irrelevant to the query relation. As shown
in Figure 1, the path Obama −endorsedBy→ Mc-
Cain −liveIn→ U.S. ←locatedIn− Hawaii does
not infer the fact bornIn(Obama,Hawaii).

Discriminating paths of different qualities is
non-trivial, and existing RL approaches for walk-
based KGQA largely rely on the terminal reward
to bias the search. Since there are usually more
spurious paths than correct ones, spurious paths
are often found first, and following exploration can
be increasingly biased towards them (Equation 6).
Entities with larger fan-in (in-degree) and fan-out
(out-degree) often exacerbate this problem.
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Figure 3: Overall training approach. At each time step t, the agent samples an outgoing link according to π̃θ(at|st),
which is the stochastic REINFORCE policy πθ(at|st) perturbed by a random binary mask m. The agent receives
reward 1 if stopped at an observed answer of the query (es, rq, ?); otherwise, it receives reward f(es, rq, eT )
estimated by the reward shaping (RS) network. The RS network is pre-trained and doesn’t receive gradient updates.

Guu et al. (2017) identified a similar issue in
RL-based semantic parsing with weak supervi-
sion, where programs that do not semantically
match the user utterance frequently pass the tests.
To solve this problem, Guu et al. (2017) proposed
randomized beam search combined with a meri-
tocratic update rule to ensure all trajectories that
obtain rewards are up-weighted roughly equally.

Here we propose the action dropout tech-
nique which achieves similar effect as randomized
search and is simpler to implement over graphs.
Action dropout randomly masks some outgoing
edges for the agent in the sampling step of REIN-
FORCE. The agent then performs sampling2 ac-
cording to the adjusted action distribution

π̃θ(at|st) ∝ (πθ(at|st) ·m+ ϵ) (8)

mi ∼ Bernoulli(1− α), i = 1, . . . |At|, (9)

where each entry of m ∈ {0, 1}|At| is a binary
variable sampled from the Bernoulli distribution
with parameter 1 − α. A small value ϵ is used
to smooth the distribution in case m = 0, where
π̃θ(at|st) becomes uniform.

Our overall approach is illustrated in Figure 3.

3 Related Work

In this section, we summarize the related work and
discuss their connections to our approach.

2We only modify the sampling distribution and still use
πθ(at|st) to compute the gradient update in equation 6.

3.1 Knowledge Graph Embeddings

KG embeddings (Bordes et al., 2013; Socher
et al., 2013; Yang et al., 2014; Trouillon et al.,
2016; Dettmers et al., 2018) are one-hop KG
modeling approaches which learn a scoring func-
tion f(es, r, eo) to define a fuzzy truth value of
a triple in the embedding space. These mod-
els can be adapted for query answering by sim-
ply return the eo’s with the highest f(es, r, eo)
scores. Despite their simplicity, embedding-based
models achieved state-of-the-art performance on
KGQA (Das et al., 2018). However, such models
ignore the symbolic compositionality of KG rela-
tions, which limits their usage in more complex
reasoning tasks. The reward shaping (RS) strategy
we proposed is a step to combine their capabil-
ity in modeling triple semantics with the symbolic
reasoning capability of the path-based approach.

3.2 Multi-Hop Reasoning

Multi-hop reasoning focus on learning symbolic
inference rules from relational paths in the KG and
has been formulated as sequential decision prob-
lems in recent works (Xiong et al., 2017; Das et al.,
2018; Shen et al., 2018; Chen et al., 2018). In par-
ticular, DeepPath (Xiong et al., 2017) first adopted
REINFORCE to search for generic representative
paths between pairs of entities. DIVA (Chen et al.,
2018) also performs generic path search between
entities using RL and its variational objective can
be interpreted as model-based reward assignment.
MINERVA (Das et al., 2018) first introduced RL



to search for answer entities of a particular KG
query end-to-end. MINERVA uses entropy reg-
ularization to softly encourage the policy to sam-
ple diverse paths, and we show that hard action
dropout is more effective in this setup. Reinforce-
Walk (Shen et al., 2018) further proposed to solve
the reward sparsity problem in walk-based QA
using off-policy learning. ReinforceWalk scores
the search targets with a value function which
is updated based on the search history cached
through epochs. In comparison, we leveraged ex-
isting embedding-based models for reward shap-
ing, which is much more efficient during training.

3.3 Reinforcement Learning

Recently, RL has seen a variety of applications in
NLP including machine translation (Ranzato et al.,
2015), summarization (Paulus et al., 2017), and se-
mantic parsing (Guu et al., 2017). Compared to
the domain of gaming (Mnih et al., 2013) where
RL is mostly applied for, RL formulations in NLP
often have a large discrete action space. For ex-
ample, in machine translation, the space of possi-
ble actions is the entire vocabulary of a language.
Walk-based QA also suffers from this problem,
as some entities may have thousands of neigh-
bors (e.g. U.S.). Since often there is no golden
path available for a KG reasoning problem, we
cannot leverage supervised pre-training to initial-
ize the path search following the common practice
in RL-based natural language generation (Ranzato
et al., 2015). On the other hand, the inference
paths being studied in a KG are often much shorter
(usually containing 2-5 steps) compared to the tar-
get sentences in the NL generation problems (of-
ten containing 20-30 words), which simplifies the
training to some extent.

4 Experiment Setup

We evaluate our modeling contributions on five
KGs from different domains and exhibiting differ-
ent graph properties (§ 4.1). We compare with two
classes of state-of-the-art KG models: multi-hop
neural symbolic approaches and KG embeddings
(§4.2). In this section, we describe the datasets and
our experiment setup in detail.

4.1 Dataset

We adopt five benchmark KG datasets for query
answering: (1) Alyawarra Kinship, (2) Unified
Medical Language Systems (Kok and Domingos,

Dataset #Ent #Rel #Fact #degree
mean median

Kinship 104 25 8,544 85.15 82
UMLS 135 46 5,216 38.63 28
FB15k-237 14,505 237 272,115 19.74 14
WN18RR 40,945 11 86,835 2.19 2
NELL-995 75,492 200 154,213 4.07 1

Table 1: KGs used in the experiments sorted by in-
creasing sparsity level.

2007), (3) FB15k-237 (Toutanova et al., 2015), (4)
WN18RR (Dettmers et al., 2018), and (5) NELL-
995 (Xiong et al., 2017). The statistics of the
datasets are shown in Table 1.

4.2 Baselines and Model Variations

We compare with three embedding based models:
DistMult (Yang et al., 2014), ComplEx (Trouillon
et al., 2016) and ConvE (Dettmers et al., 2018).
We also compare with three multi-hop neural sym-
bolic models: (a) NTP-λ, an improved version of
Neural Theorem Prover (Rocktäschel and Riedel,
2017), (b) Neural Logical Programming (Neu-
ralLP) (Yang et al., 2017) and (c) MINERVA. For
our own approach, we include two model vari-
ations that use ComplEx and ConvE as the re-
ward shaping modules respectively, denoted as
Ours(ComplEx) and Ours(ConvE). We quote the
results of NeuralLP, NTP-λ and MINERVA re-
ported in Das et al. (2018), and replicated the em-
bedding based systems.3

4.3 Implementation Details

Beam Search Decoding We perform beam
search decoding to obtain a list of unique en-
tity predictions. Because multiple paths may lead
to the same target entity, we compute the list of
unique entities reached in the final search step and
assign each of them the maximum score of all
paths that led to it. We then output the top-ranked
unique entities. We find this approach to improve
over directly taking the entities ranked at the beam
top, as many of them are repetitions.

KG Setup Following previous work, we treat
every KG link as bidirectional and augment the
graph with the reversed (eo, r

−1, es) links. We use
the same train, dev, and test set splits as Das et al.
(2018). We exclude any link from the dev and

3 Das et al. (2018) reported MINERVA results with the en-
tity embedding usage as an extra hyperparameter – the quoted
performance of MINERVA in Table 2 on UMLS and Kinship
were obtained with entity embeddings setting to zero. In con-
trast, our system always uses trained entity embeddings.



Model UMLS Kinship FB15k-237 WN18RR NELL-995
@1 @10 MRR @1 @10 MRR @1 @10 MRR @1 @10 MRR @1 @10 MRR

DistMult (Yang et al., 2014) 82.1 96.7 86.8 48.7 90.4 61.4 32.4 60.0 41.7 43.1 52.4 46.2 55.2 78.3 64.1

ComplEx (Trouillon et al., 2016) 89.0 99.2 93.4 81.8 98.1 88.4 32.8 61.6 42.5 41.8 48.0 43.7 64.3 86.0 72.6

ConvE (Dettmers et al., 2018) 93.2 99.4 95.7 79.7 98.1 87.1 34.1 62.2 43.5 40.3 54.0 44.9 67.8 88.6 76.1
NeuralLP (Yang et al., 2017) 64.3 96.2 77.8 47.5 91.2 61.9 16.6 34.8 22.7 37.6 65.7 46.3 – – –

NTP-λ (Rocktäschel et. al. 2017) 84.3 100 91.2 75.9 87.8 79.3 – – – – – – – – –

MINERVA (Das et al., 2018) 72.8 96.8 82.5 60.5 92.4 72.0 21.7 45.6 29.3 41.3 51.3 44.8 66.3 83.1 72.5

Ours(ComplEx) 88.7 98.5 92.9 81.1 98.2 87.8 32.9 54.4 39.3 43.7 54.2 47.2 65.5 83.6 72.2

Ours(ConvE) 90.2 99.2 94.0 78.9 98.2 86.5 32.7 56.4 40.7 41.8 51.7 45.0 65.6 84.4 72.7

Table 2: Query answering performance compared to state-of-the-art embedding based approaches (top part) and
multi-hop reasoning approaches (bottom part). The @1, @10 and MRR metrics were multiplied by 100. We
highlight the best approach in each category.

test set (and its reversed link) from the train set.
Following Das et al. (2018), we cut the maximum
number of outgoing edges of an entity by thresh-
old η to prevent GPU memory overflow: for each
entity we keep its top-η neighbors with the highest
PageRank scores (Page et al., 1999) in the graph.

Hyperparameters We set the entity and relation
embedding size to 200 for all models. We use
Xavier initialization (Glorot and Bengio, 2010) for
the embeddings and the NN layers. For ConvE, we
use the same convolution layer and label smooth-
ing hyperparameters as Dettmers et al. (2018). For
path-based models, we use a three-layer LSTM as
the path encoder and set its hidden dimension to
200. We perform grid search on the reasoning path
length (2, 3), the node fan-out threshold η (256-
512) and the action dropout rate α (0.1-0.9). Fol-
lowing Das et al. (2018), we add an entropy regu-
larization term in the objective and tune the weight
parameter β within 0-0.1. We use Adam optimiza-
tion (Kingma and Ba, 2014) and search the learn-
ing rate (0.001-0.003) and mini-batch size (128-
512).4 For all models we apply dropout to the en-
tity and relation embeddings and all feed-forward
layers, and search the dropout rates within 0-0.5.
We use a decoding beam size of 512 for NELL-
995 and 128 for the other datasets.

Evaluation Protocol We convert each triple
(es, r, eo) in the test set into a query and com-
pute ranking-based evaluation metrics. The mod-
els take es, r as the input and output a list of can-
didate answers Eo = [e1, . . . , eL] ranked in de-
creasing order of confidence score. We compute

4On some datasets, we found larger batch size to con-
tinue improving the performance but had to stop at 512 due
to memory constraints.

reo , the rank of eo among Eo, after removing the
other correct answers from Eo and use it to com-
pute two types of metrics: (1) Hits@k which is
the percentage of examples where reo ≤ k and (2)
mean reciprocal rank (MRR) which is the mean of
1/reo for all examples in the test set. We use the
entire test set for evaluation, with the exception of
NELL-995, where test triples with unseen entities
are removed following Das et al. (2018).

Our Pytorch implementation of all experi-
ments is released at https://github.com/
salesforce/MultiHopKG.

5 Results

5.1 Model Comparison
Table 2 shows the evaluation results of our pro-
posed approach and the baselines. The top
part presents embedding based approaches and
the bottom part presents multi-hop reasoning ap-
proaches.5

We find embedding based models perform
strongly on several datasets, achieving overall best
evaluation metrics on UMLS, Kinship, FB15K-
237 and NELL-995 despite their simplicity. While
previous path based approaches achieve com-
parable performance on some of the datasets
(WN18RR, NELL-995, and UMLS), they perform
significantly worse than the embedding based
models on the other datasets (9.1 and 14.2 absolute
points lower on Kinship and FB15k-237 respec-
tively). A possible reason for this is that embed-
ding based methods map every link in the KG into
the same embedding space, which implicitly en-
codes the connectivity of the whole graph. In con-
trast, path based models use the discrete represen-

5We report the model robustness measurements in § A.1.

https://github.com/salesforce/MultiHopKG
https://github.com/salesforce/MultiHopKG


Model UMLS Kinship FB15k237 WN18RR NELL995

Ours(ConvE) 73.0 75.0 38.2 43.8 78.8
−RS 67.7 66.5 35.1 45.7 78.4
−AD 61.3 65.4 31.0 39.1 76.1

Table 3: Comparison of dev set MRR of Ours(ConvE)
and models without reward shaping and action dropout.

tation of a KG as input, and therefore have to leave
out a significant proportion of the combinatorial
path space by selection. For some path based ap-
proaches, computation cost is a bottleneck. In par-
ticular, NeuralLP and NTP-λ failed to scale to the
larger datasets and their results are omitted from
the table, as Das et al. (2018) reported.

Ours is the first multi-hop reasoning approach
which is consistently comparable or better than
embedding based approaches on all five datasets.
The best single model, Ours(ConvE), improves
the SOTA performance of path-based models on
three datasets (UMLS, Kinship, and FB15k-237)
by 4%, 9%, and 39% respectively. On NELL-995,
our approach did not significantly improve over
existing SOTA. The NELL-995 dataset consists of
only 12 relations in the test set and, as we further
detail in the analysis (§ 5.3.3), our approach is less
effective for those relation types.

The model variations using different reward
shaping modules perform similarly. While a better
reward shaping module typically results in a better
overall model, an exception is WN18RR, where
ComplEx performs slightly worse on its own but
is more helpful for reward shaping. We left the
study of the relationship between the reward shap-
ing module accuracy and the overall model perfor-
mance as future work.

5.2 Ablation Study

We perform an ablation study where we remove
reward shaping (−RS) and action dropout (−AD)
from Ours(ConvE) and compare their MRRs to
the whole model on the dev sets.6 As shown in
Table 3, on most datasets, removing each com-
ponent results in a significant performance drop.
The exception is WN18RR, where removing the
ConvE reward shaping module improves the per-
formance.7 Removing reward shaping on NELL-

6According to Table 3 and Table 2, the dev and test set
evaluation metrics differ significantly on several datasets. We
discuss the cause of this in § A.2.

7A possible explanation for this is that as path-based mod-
els tend to outperform the embedding based approaches on
WN18RR, ConvE may be supplying more noise than useful

995 does not change the results significantly. In
general, removing action dropout has a greater im-
pact, suggesting that thorough exploration of the
path space is important across datasets.

5.3 Analysis

5.3.1 Convergence Rate
We are interested in studying the impact of each
proposed enhancement on the training conver-
gence rate. In particular, we expect reward shap-
ing to accelerate the convergence of RL (to a better
performance level) as it propagates prior knowl-
edge about the underlying KG to the agent. On
the other hand, a fair concern for action dropout is
that it can be slower to train, as the agent is forced
to explore a more diverse set of paths. Figure 4
eliminates this concern.

The first row of Figure 4 shows the changes in
dev set MRR of Ours(ConvE) (green ∗) and the
two ablated models w.r.t. # epochs. In general, the
proposed approach is able to converge to a higher
accuracy level much faster than either of the ab-
lated models and the performance gap often per-
sists until the end of training (on UMLS, Kinship,
and FB15k-237). Particularly, on FB15k-237, our
approach still shows improvement even after the
two ablated models start to overfit, with −AD be-
ginning to overfit sooner. On WN18RR, introduc-
ing reward shaping hurt dev set performance from
the beginning, as discussed in § 5.2. On NELL-
995, Ours(ConvE) performs significantly better in
the beginning, but −RS gradually reaches a com-
parable performance level.

It is especially interesting that introducing ac-
tion dropout immediately improves the model per-
formance on all datasets. A possible explanation
for this is that by exploring a more diverse set of
paths the agent learns search policies that general-
ize better.

5.3.2 Path Diversity
We also compute the total number of unique paths
the agent explores during training and visualize its
change w.r.t. # training epochs in the second row
of Figure 4. When counting a unique path, we in-
clude both the edge label and intermediate entity.

information about the KG. Yet counter-intuitively, we found
that adding the ComplEx reward shaping module helps, de-
spite the fact that ComplEx performs slightly worse than
ConvE on this dataset. This indicates that dev set accuracy
is not the only factor which determines the effectiveness of
reward shaping.
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Figure 4: Illustration of convergence rate and path exploration efficiency. The three curves in each subplot
represents Ours(ConvE) (green ∗) and the two ablated models: −RS (blue△) and −AD (orange @). The top row
shows the change of dev set MRR and the bottom row shows the growth of # unique paths explored w.r.t. # epochs.

Dataset To-many To-one
% Ours(ConvE) −RS −AD % Ours(ConvE) −RS −AD

UMLS 99.1 73.1 67.9 (-7%) 61.3 (-16%) 0.9 62.5 55.5 (-11%) 54.4 (-13%)
Kinship 100 75 66.5 (-11%) 65.4 (-13%) 0 – – –
FB15k-237 76.6 28.3 24.5 (-13%) 20.9 (-26%) 23.4 72 69.8 (-3%) 63.9 (-11%)
WN18RR 52.8 65 65.7 (+1%) 57.9 (-11%) 47.2 20.1 23.2 (+16%) 18.1 (-10%)
NELL-995 12.9 55.7 62.1 (+12%) 56.9 (+2%) 87.1 81.4 80.7 (-1%) 80.5 (-1%)

Table 4: MRR evaluation of different relation types (to-many vs. to-one) on five datasets. The % columns show
the percentage of examples of each relation type found in the development split of the corresponding dataset. In
general, our proposed techniques improve the prediction results for to-many relations more significantly.

First we observe that, on all datasets, the agent ex-
plores a large number of paths before reaching a
good performance level. The speed of path discov-
ery slowly decreases as training progresses. On
smaller KGs (UMLS and Kinship), the rate of en-
countering new paths is significantly lower after a
certain number of epochs, and the dev set accuracy
plateaus correspondingly. On much larger KGs
(FB15k-237, WN18RR, and NELL-995), we did
not observe a significant slowdown before severe
overfitting occurs and the dev set performance
starts to drop. A possible reason for this is that the
larger KGs are more sparsely connected compared
to the smaller KGs (Table 1), therefore it is less
efficient to gain generalizable knowledge from the
KG by exploring a limited proportion of the path
space through sampling.

Second, while removing action dropout signifi-
cantly lowers the effectiveness of path exploration
(orange @ vs. green ∗), we observe that removing
reward shaping (blue △) slightly increases the #
paths visited if the action dropout rate is kept the
same. This indicates that the correlation between

# paths explored and dev set performance is not
strictly positive. The best performing model is not
always the model that explored the largest # paths.
It also demonstrates the role of reward shaping as
a regularizer which guides the agent to avoid noisy
paths with its prior knowledge.

5.3.3 Performance w.r.t. Relation Types
We investigate the behaviors of our proposed ap-
proach w.r.t different relation types. For each KG,
we classify its set of relations into two categories
based on the answer set cardinality. Specifically,
we define the metric ξr as the average answer set
cardinality of all queries with topic relation r. We
count r as a “to-many” relation if ξr > 1.5, which
indicates that most queries in relation r has more
than 1 correct answer; we count r as a “to-one”
relation otherwise, meaning most queries of this
relation have only 1 correct answer.

Table 4 shows the percentage of examples of to-
many and to-one relations on each dev dataset and
the MRR evaluation metrics of previously studied
models computed on the examples of each relation



Dataset Seen Queries Unseen Queries
% Ours(ConvE) −RS −AD % Ours(ConvE) −RS −AD

UMLS 97.2 73.1 67.9 (-7%) 61.4 (-16%) 2.8 68.5 61.5 (-10%) 58.7 (-14%)
Kinship 96.8 75.1 66.5 (-11%) 65.8 (-12%) 3.2 73.6 64.3 (-13%) 53.3 (-27%)
FB15k-237 76.1 28.3 24.3 (-14%) 20.6 (-27%) 23.9 70.9 69.1 (-2%) 63.9 (-10%)
WN18RR 41.8 60.8 62.0 (+2%) 53.4 (-12%) 58.2 31.5 33.9 (+7%) 28.8 (-9%)
NELL-995 15.3 40.4 45.9 (+14%) 42.5 (+5%) 84.7 85.5 84.7 (-1%) 84.3 (-1%)

Table 5: MRR evaluation of seen queries vs. unseen queries on five datasets. The % columns show the percentage
of examples of seen/unseen queries found in the development split of the corresponding dataset.

type. Since UMLS and Kinship are densely con-
nected, they almost exclusively contain to-many
relations. FB15k-237 mostly contains to-many re-
lations. In Figure 4, we observe the biggest rela-
tive gains from the ablated models on these three
datasets. WN18RR is more balanced and con-
sists of slightly more to-many relations than to-
one relations. The NELL-995 dev set is a unique
one which almost exclusively consists of to-one
relations. There is no common performance pat-
tern over the two relation types across datasets:
on some datasets all models perform better on to-
many relations (UMLS, WN18RR) while others
show the opposite trend (FB15k-237, NELL-995).
We leave the study of these discrepancies to future
work.

We show the relative performance change of the
ablated models−RS and−AD w.r.t. Ours(ConvE)
in parentheses. We observe that in general our
proposed enhancements are effective in improving
query-answering over both relation types (more
effective for to-many relations). However, adding
the ConvE reward shaping module on WN18RR
hurts the performance over both to-many and to-
one relations (more for to-one relations). On
NELL-995, both techniques hurt the performance
over to-many relations.

5.3.4 Performance w.r.t. Seen Queries vs.
Unseen Queries

Since most benchmark datasets randomly split the
KG triples into train, dev and test sets, the queries
that have multiple answers may fall into multi-
ple splits. As a result, some of the test queries
(es, rq, ?) are seen in the training set (with a dif-
ferent set of answers) while the others are not. We
investigate the behaviors of our proposed approach
w.r.t. seen and unseen queries.

Table 5 shows the percentage of examples as-
sociated with seen and unseen queries on each
dev dataset and the corresponding MRR evalua-
tion metrics of previously studied models. On

most datasets, the ratio of seen vs. unseen queries
is similar to that of to-many vs. to-one relations
(Table 4) as a result of random data split, with
the exception of WN18RR. On some datasets, all
models perform better on seen queries (UMLS,
Kinship, WN18RR) while others reveal the op-
posite trend. We leave the study of these model
behaviors to future work. On NELL-995 both of
our proposed enhancements are not effective over
the seen queries. In most cases, our proposed en-
hancements improve the performance over unseen
queries, with AD being more effective.

6 Conclusions

We propose two modeling advances for end-to-
end RL-based knowledge graph query answer-
ing: (1) reward shaping via graph completion and
(2) action dropout. Our approach improves over
state-of-the-art multi-hop reasoning models con-
sistently on several benchmark KGs. A detailed
analysis indicates that the access to a more ac-
curate environment representation (reward shap-
ing) and a more thorough exploration of the search
space (action dropout) are important to the perfor-
mance boost.

On the other hand, the performance gap be-
tween RL-based approaches and the embedding-
based approaches for KGQA remains. In future
work, we would like to investigate learnable re-
ward shaping and action dropout schemes and ap-
ply model-based RL to this domain.
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A Appendix

A.1 Model Robustness

We run the best embedding-based model ConvE
and Ours(ConvE) on all datasets using 5 differ-
ent random seeds with all other hyperparameters
fixed. Table 6 reports the mean and standard devi-
ation of each model. We observe that both models
demonstrate a small standard deviation (< 0.01)
on all datasets.

Dataset ConvE Ours(ConvE)

UMLS 95.5±0.4 93.7±0.2
Kinship 86.9±0.3 86.2±0.7
FB15k-237 43.5±0.1 40.7±0.2
WN18RR 45.3±0.4 44.7±0.2
NELL-995 76.2±0.3 72.7±0.4

Table 6: Test set MRR×100 mean and standard devia-
tion across five runs on all datasets.

A.2 Development Set Evaluation Using
Complete KGs

Comparing Table 2 and Table 3 reveals that the
dev set MRRs are significantly lower than the test
set MRRs on some datasets (UMLS, Kinship and
FB15k-237). Such discrepancies are caused by the
multi-answer queries in these datasets. As most
benchmark datasets randomly split the KG triples
into train/dev/test sets, the queries that have multi-
ple answers may fall into multiple splits. Because
we hide all triples in the test set during the dev set
evaluation, some predictions generated during dev
set evaluation were wrongly punished as false neg-
atives. In contrast, the test set evaluation metrics
are computed using the complete KGs. Access to
the complete KG eliminates most of the false neg-
atives cases and hence increases the performance.

Model UMLS Kinship FB15k237 WN18RR NELL995

Ours(ConvE) 95.1 86.8 41.8 44.1 78.8
−RS 85.6 75.7 37.1 46.1 78.4
−AD 76.2 75.9 32.4 39.3 76.1

Table 7: Comparison of dev set MRR computed using
the complete KGs of Ours(ConvE) and models without
reward shaping and action dropout.

Table 7 shows the dev set MRR of the same
systems shown in Table 3 with the MRRs com-
puted using the complete KGs. On four of the

datasets, the evaluation metrics increases signifi-
cantly to the level that is comparable to those on
the test set, with the relative improvement corre-
lated with the average node fan-out in the KG (Ta-
ble 1).

Notice that Table 7 is generated after all hyper-
parameters were fixed and the purpose is to show
the effects of such dataset peculiarities. To avoid
potential test set leakage, hyperparameter search
should be done with the test set triples hidden (Ta-
ble 1) instead of with the full KG.

A.3 Action Dropout Rates Used for Different
KGs

Table 8 show the action dropout rates used for all
KG datasets in our experiments. In general, larger
action dropout rates are necessary for KGs that are
densely connected. We find a positive correlation
between the optimal action dropout rate and the
average node fan-out (Table 1).

For UMLS and Kinship, we tried setting the ac-
tion dropout rate to 1.0 (completely random sam-
pling) and observed small but significant perfor-
mance drop. Random sampling performs reason-
ably well on these two datasets possibly due to the
fact that they are small. For larger KGs (FB15k-
237, WN18RR, NELL-995), policy-guided sam-
pling is necessary.

Dataset α

UMLS 0.95
Kinship 0.9
FB15k-237 0.5
WN18RR 0.1
NELL-995 0.1

Table 8: Action dropout rates used in our experiments.


