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Knowledge Graph Search

Search:

Look up for facts that exist in the knowledge
graph via a formal query language (e.g. SPARQL)

Was born in

[Barack Obama}

>[ Honolulu ]




Knowledge Graph Reasoning

Inference/Reasoning:

Derive additional knowledge given existing facts

WasBornin HasCapital
{Barack Obama} >[ Honolulu } P { Hawaii ]
WasBornin
{Barack Obama} >[ Hawaii }



Knowledge Graph Reasoning

Inference/Reasoning:

Derive additional knowledge given existing facts

& | WasBornin HasCapital | -
{Barack ObamaJ [ Honolulu } | Hawaii ]
WasBornin

{Barack Obama} >[ Hawaii }
WasBornin Locatedin
{Barack Obama} >[ Honolulu } >[ United States J

WasBornl
{Barack Obama} aszornm >[ United States J
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Knowledge Graph Reasoning

Michelle
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{ @ Reasoning is a core problem
.~ for KGs as most often it is '
impossible to curate and

store all facts in a KG.

Inference/Reasoning: e e i

Derive additional knowledge given existing facts

WasBornin HasCapital
{Barack Obama} >[ Honolulu } astaplta { Hawaii ]
WasBornl
{Barack Obama} as=ornim >[ Hawaii }
WasBornin Locatedin
{Barack Obama} >[ Honolulu } >[United States}

WasBornl
{Barack Obama} aszornm >[ United States J




Knowledge Graph Reasoning
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Knowledge Graph Reasoning

Knowledge Graph Embeddings
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Knowledge Graph Embeaddings
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Tom O — O  Steven
Hanks € R e, Spielberg

collaborator

Confidence for Triplet

A
/ Neural
Tensor
R Network
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QO0)

NTN (Socher et. al. 2013), DistMult (Yang et al. 2015), ComplEx (Trouillon et al. 2016), ConvE (Dettmers et al. 2018).



Knowledge Graph Embeddings
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salesforce
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€1 R €s
Model Scoring Function ¢,.(e;,e,) Relation Parameters Space Complexity

SE (Bordes et al. 2014) |[Wres — Wike,|| WL Wit e RF¥F O(nek + n-k?)
TransE (Bordes et al. 2013a) les +rr —eol|, r, € RF O(nek + npk)
DistMult (Yang et al. 2015) (€5,Tr,€,) r. € RF O(nek + n.k)
ComplEx (Trouillon et al. 2016) (€5,Tr, €0) r,. € CF O(nek + nk)
ConvE F(vee(f([€5;T7] * w))W)e, r, € R¥ O(nek + nk')

Convolutional 2D Knowledge Graph Embeddings. Dettmers et al. 2018.



Knowledge Graph Embeaddings
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Tom O — O  Steven
Hanks € R e, Spielberg
collaborator
Model Scoring Function ¢,.(e;,e,) Relation Parameters Space Complexity
SE (Bordes et al. 2014) Wres — eroup WL Wit e RF¥F O(nek + n.k?)
TransE (Bordes et al. 2013a) les + 1 — e, r. € R" O(nek + ngk)
DistMult (Yang et al. 2015) (€5,Tr,€,) r. € RF O(nek + n.k)
ComplEx (Trouillon et al. 2016) (€5,Tr, €0) r,. € CF O(nek + nk)
LCONVE J(vec(f(l€s: Tl xw))Wleq ... r €RF O(nek k') .

Convolutional 2D Knowledge Graph Embeddings. Dettmers et al. 2018.



ConvE: Convolutional 2D Knowledge Graph Embeddings

Projection to

Embeddings "Image” Feature maps embedding Logits Predictions
dimension
O 0.9
O 0.2
O 0.1
Fully connected o Matrix O  Logistic 0.6
Concat Convolve projection multiplication O  sigmoid 0.2
el . N . O . O . 0.3
S wm o § 00
>< %ﬁ entity matrix O 0'1
O 0.4
O 0.4
Embedding Feature map Hidden layer O 0.4
dropout (0.2) dropout (0.2) dropout (0.3)

Convolutional 2D Knowledge Graph Embeddings. Dettmers et al. 2018.



ConvE: Convolutional 2D Knowledge Graph Embeddings

el

rel

Embeddings

Concat

>

A

Illmagell

Convolve

>

Embedding
dropout (0.2)

Feature maps

+H

Feature map
dropout (0.2)

Convolutional 2D Knowledge Graph Embeddings. Dettmers et al. 2018.

Fully connected
projection

>

Projection to

embedding Logits Predictions
dimension
O 0.9
O 0.2
O 0.1
S Matrix 8 Logistic 0.6
multiplication sigmoid 0.2
O > O > 0.3
g with 8 8-9
entity matrix O 01
O 0.4
O 0.4
Hidden layer O 0.4
dropout (0.3)
@ Training:

- Score facts observed in the
partial KG higher than those
unobserved

- Sample negatives
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ConvE: Convolutional 2D Knowledge Graph Embeddings

el
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Embeddings

Concat

>

A

Illmagell

Convolve

>

Embedding
dropout (0.2)

Feature maps

+H

Feature map
dropout (0.2)

Convolutional 2D Knowledge Graph Embeddings. Dettmers et al. 2018.

Fully connected
projection
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Projection to
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Better scoring functions were
proposed since. Please refer

to the literature for more

details.

-
. .
- .
-----------------------------------------------------------------------------------------------



Knowledge Graph Embeddings

oo (eeo
Tom O —
Hanks € R

cé Highly accuwrate §
Efficient

N\

WordNet 86.2

Freebase 90.0

Tab 1. NTN KB fact inference
performance on the WordNet and

Freebase benchmarks (Socher et. al.
2013)

Convolutional 2D Knowledge Graph Embeddings. Dettmers et al. 2018.
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Knowledge Graph Reasoning

Path Ranking Algorithm (PRA) RL®
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Path Ranking Algorithm

Identifying relation paths connecting two United States

entities (e, e,) in the KG and use the paths California \
as features for predicting new relations.

live_in ]
produced in

Steven
Spielberg

P = Ry...Ry

born in v director

The Post
collaborator?

[ Tom Hanks } Castin e Director {S.S.]

cast in

cast _in
Tom Hanks
[ Tom Hanks } Castin de Producedin d¢ Liveln’ (S.S.}
collaborator? . RN
{ Tom Hanks ] Bornin J¢ Locatedin Je Liveln’ [S.S.J \O/wa orater Meryl Streep

Phyllida Lloyd

Relational Retrieval Using a Combination of Path-Constrained Random Walks. Lao and Cohen 2010.

Random Walk Inference and Learning in A Large-Scale Knowledge Base. Lao and Cohen 2011.



Finding Inference Paths

Exhaustive (Lao and Cohen 2010)

Obtaining all paths connecting e, and e, (dynamic programming)

Relational Retrieval Using a Combination of Path-Constrained Random Walks. Lao and Cohen 2010.

Random Walk Inference and Learning in A Large-Scale Knowledge Base. Lao and Cohen 2011.



FInding Inference Paths

Exhaustive (Lao and Cohen 2010)
Obtaining all paths connecting e, and e, (dynamic programming)

Data-driven (Lao and Cohen 2011)

Identifying only paths that are potentially useful for an inference task

Any node e visited during path search must be supported by at least a fraction a of

seed entities §; seen during training S, “
@ s;supports e iff. the random
. , . walk probability between s;

Any path P must retrieve at least one target entity 7; on . and eis greater than 0

the training set

Relational Retrieval Using a Combination of Path-Constrained Random Walks. Lao and Cohen 2010.

Random Walk Inference and Learning in A Large-Scale Knowledge Base. Lao and Cohen 2011.



FInding Inference Paths

Reinforcement Learning (Xiong et al. 2018)
Learn a policy based agent to sample the most informative paths between ¢, and e,

Starting from e, the agent uses a policy network to pick the most promising relation

to extend its path at each step until it reaches the target entity e,, or has reached a
maximum number of search steps.

Hybrid reward
|F|

+1, 1f the path reaches e;qrget _ 1 _ 1
_ ’ TEFFICIENCY = TDIVERSITY = cos(p, Pi)
foLOBAL {—1, otherwise length(p) | ; '

Supervised policy learning and retraining with reward

DeepPath: A Reinforcement Learning Method for Knowledge Graph Reasoning. Xiong et al. 2018.




Path Ranking Algorithm

Cé ° E)q:l,alwa ble

- Performs well for e, O—L— €; queries
- can work for rare/unseen entities as
reasoning Ls based on path features

Inefficient for e.0

'q

)

. ) queries

United States

A

live in

California

locate in

produced in

Steven
Spielberg

born in v director

The Post
collaborator? °ros

cast in )
cast In

Tom Hanks

collaborator? N

collaborator
\O/ Meryl Streep

Phyllida Lloyd
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Knowledge Graph Reasoning

Sequential Decision Making RL®=

United States

California o /O\\

live_in

produced in

Steven
Spielberg

born _in ’ > 4 director

The P
collaborator? e Post

cast in _
cast In

Tom Hanks

collaborator? .

collaborator
\O/ Meryl Streep

Phyllida Lloyd



Sequential Multi-Hop Reasoning

United States

California

locate_in
S eq U e nt | al Steve N live_in produced in
decision making Spielbg%\
born in " director The POSt

\ collaborator?

 }

[

! cast in
cast in
Tom Hanks
collaborator?
collaborator
Meryl Streep
Which directors has Tom Hanks
~5 collaborated with?
Phyllida Lloyd

20



Sequential Multi-Hop Reasoning
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California
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Which directors has Tom Hanks
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Phyllida Lloyd

20



Sequential Multi-Hop Reasoning
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California
| te i
O Tom Hanks e
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Sequential Multi-Hop Reasoning

United States

California

locate in

O Tom Hanks

iive_in produced in
cast in / \
- "

O The Post born_in

\ collaborator?

director \ ,' \
. cast in

O Stephen Spielberg {

collaborator?

collaborator
Meryl Streep
Which directors has Tom Hanks
~S collaborated with?
Phyllida Lloyd

28



Sequential Multi-Hop Reasoning

United States

California

locate in

O Tom Hanks

iive_in produced in
cast in / \
- "

O The Post born_in

\ collaborator?

director \ ,' \
. cast in

O Stephen Spielberg {
O <END>

collaborator?

collaborator
Meryl Streep
Which directors has Tom Hanks
~5 collaborated with?
Phyllida Lloyd

29



Sequential Multi-Hop Reasoning

United States

California
O Tom Hanks focate.in
Steven iive_in produced_in
cast in \ Spielbgy
O The Post born._in v director The Post
\ collaborator?
director N . /
' cast In
_/ cast in
_ Tom Hanks
Reinforcement
Learning collaborator?
collaborator
Meryl Streep
Phyllida Lloyd

MINERVA (Das et al. 2018); MINERVA + Reward Shaping (Lin et al. 2018)
30



Reinforcement Learning Framework

q

Go for A Walk And Arrive at the Answer: Reasoning Over Paths in Knowledge Bases using Reinforcement Learning
(Das et al. 2018)

<State> <Action> <Transition> <Reward>
r

31



Reinforcement Learning Framework

<Environment> (Action> <Transition> <Reward>

Go for A Walk And Arrive at the Answer: Reasoning Over Paths in Knowledge Bases using Reinforcement Learning
(Das et al. 2018)

32



Reinforcement Learning Framework

<Environment> <State> <Transition> <Reward>

q
€. O . | A .
e
O
e, 7’2 02

Go for A Walk And Arrive at the Answer: Reasoning Over Paths in Knowledge Bases using Reinforcement Learning
(Das et al. 2018)

33



Reinforcement Learning Framework

q
e, — 1 A,
€
‘e
es r2 62

Action space: All nodes with incoming
N edges from e, in the graph

Go for A Walk And Arrive at the Answer: Reasoning Over Paths in Knowledge Bases using Reinforcement Learning
(Das et al. 2018)
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Reinforcement Learning Framework

<Environment> <State> (Action> <Reward>

Go for A Walk And Arrive at the Answer: Reasoning Over Paths in Knowledge Bases using Reinforcement Learning
(Das et al. 2018)

35



Reinforcement Learning Framework

<Environment> <State> (Action> <Reward>

Go for A Walk And Arrive at the Answer: Reasoning Over Paths in Knowledge Bases using Reinforcement Learning
(Das et al. 2018)

30



Reinforcement Learning Framework

<Environment> <State> <Action> <Reward>

Go for A Walk And Arrive at the Answer: Reasoning Over Paths in Knowledge Bases using Reinforcement Learning
(Das et al. 2018)
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Reinforcement Learning Framework

<Environment> <State> <Action> <Reward>

€ O - Predicted
answer

Go for A Walk And Arrive at the Answer: Reasoning Over Paths in Knowledge Bases using Reinforcement Learning
(Das et al. 2018)

33



Reinforcement Learning Framework

<Environment> <State> <Action> <Transition>

Predicted
answer

R, (s7) = 1{(e,, ” er) € G}

Go for A Walk And Arrive at the Answer: Reasoning Over Paths in Knowledge Bases using Reinforcement Learning

(Das et al. 2018)

39



Reinforcement Learning Framework

<Environment> <State> <Action> <Transition>

Policy

-
gradient L earn which

action to choose

given a state
N

R, (s7) = 1{(e,, ” er) € G}

Go for A Walk And Arrive at the Answer: Reasoning Over Paths in Knowledge Bases using Reinforcement Learning

(Das et al. 2018)

40



Policy Gradient

4 )
. . Probability of choosing
Policy function ﬂ@(at | St) an action given the
current state
\ J
et1
A 1
1 Q (4, | )
e
2 e;
e r e I e "
s 1 1 t T L g Q ﬂ@(atz | 5,)
Oo—0 | —O
. N
O mela,'|s) a; = (r;,e)
N NI
e

Go for A Walk And Arrive at the Answer: Reasoning Over Paths in Knowledge Bases using Reinforcement Learning

(Das et al. 2018) A



Policy Gradient

Policy function  7g(4;|s))

4 )

Include search

T

history in the state
representation [ Linear j

. _/

T

I 1

current state (

DICTDICIID),

EEDICIDEEEDICIID),
rn e e

O—0O

Go for A Walk And Arrive at the Answer: Reasoning Over Paths in Knowledge Bases using Reinforcement Learning

(Das et al. 2018)
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REINFORCE Training

collaborator
> ‘)

Tom Hanks Q

4 N

Sample according to

J@(ar | 5,) y

The Post

cast in

cast.in  The Post

/Q_ produced _in _.Q

cast in

Tom Hanks

cast in

The Post

\‘Q director

born in

REINFORCE (Williams, 1992)

&alifornia

Q— locate _in

Meryl Streep

—C

United States

Phyllida Lloyd

collaborator 40

Steven
Spielberg

Steven
Spielberg

O

United States

live_in O
4 )
Update © by

maximizing the

expected reward
\_ J
Steven
Spielberg

Q“

live_in Q
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REINFORCE Training

Tom Hanks Q collaboratorb‘7
4 | )
Sample according to
GT@(at | 5,) y
cast In
cast In
Tom Hanks -
cast in

Models trained using vanilla
REINFORCE performs
stgnificantly worse compared
to KG embedding baselines

The Post Meryl Streep

cast in —Q

United States

Phyllida Lloyd

collaborator 40

The Post
/Q_ produced _in _.Q
Steven

O

\‘Q director

born in
: California United States

Steven
Spielberg
live_in O
4 )
Update © by

maximizing the

Expected reward

J

Steven

Spielberg

Q— locate _in —»Q~L

live_in Q
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Sparse Reward

llllllllllllllllllllllllllll

~
Issues: False- |
negative & nearly- The Post Meryl Streep Phyllida Lloyd
correct entities = = cast in —( ) collaborator —( ) +1
true- negatives
N J U,
. : Steven
cast in  The Post United States : Spielberg
| /Q— produced_in _.Q live in O 0
castin 7 iissssssssssssssssssssesaes :
Tom Hanks
" Steven '_
cast_in 1he Post : Spielberg
\‘Q director —-—»Q 0
born_in E,....S..-E.e.\./.e..ﬁ .............
&alifornia United States : Spielberg
(- live_in ——(7) 0

Q— locate _in

Multi-Hop Knowledge Graph Reasoning with Reward Shaping (Lin et. al. 2018)



Reward Shaping

Unobserved facts [Soft correctness j

Topﬁc 61/\/’(?&5

E—'wtitg returned
bg seareh

‘ropic relation

Tom collaborator Steven

Hanks Spielberg

Multi-Hop Knowledge Graph Reasoning with Reward Shaping (Lin et. al. 2018)
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Reward Shaping

Unobserved facts [Soft correctness j
General

Tople entity ,
Entity returned

b Y sea reh

‘ropic relation

Tom collaborator Steven

Hanks Spielberg

Multi-Hop Knowledge Graph Reasoning with Reward Shaping (Lin et. al. 2018)
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Reward Shaping

collaborator

Tom Hanks Q >?
The Post Meryl Streep

Phyllida Lloyd

cast_in —C}— collaborator —Q +1

cast in  The Post United States

llllllllllllllllll

: Steven :
cast_in The Post : Spielberg

\Q— director %

n
llllllllllllllllll

born in

California United States

Q*

locate in

Multi-Hop Knowledge Graph Reasoning with Reward Shaping (Lin et. al. 2018)
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Spurious Path
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Spurious Path
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Action Dropout

Intuition: avoid sticking to
past actions that had
received rewards
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Action Dropout
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Experiment Setup

KG Benchmarks

Name # Ent. # Rel.

Kinship

UMLS 135 46

FB15k-237 BRI BN 237

WOREIRGE 40,945 11

NELL-995 RESN:icY 200

Multi-Hop Knowledge Graph Reasoning with Reward Shaping (Lin et. al. 2018)

3,544

5,216

272,115

86,835

154,213

# Degree # Degree

Avg Median

38.63 28
19.74 14
2.19 2
4.07 1

Decreasing
conmnectivity
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Main Results
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Main Results
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Main Results
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Interpretable Results
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Interpretable Results
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Sequential Multi-Hop Reasoning
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Open Source: https://github.com/salestorce/MultiHopKG

 Knowledge graph reasoning is critical for KG-based applications as KGs are intrinsically incomplete

* (Deep) reinforcement learning provides a strong family of algorithms for learning informative
reasoning paths while being time and space efficient

* Qur work combines policy network with KG embedding based reward shaping is the first
sequential multi-hop reasoning approach that matches the performance of KG embedding
based approaches on multiple benchmarks

Multi-Hop Knowledge Graph Reasoning with Reward Shaping. Xi Victoria Lin, Richard Socher and Caiming Xiong. EMNLP 2018.

* Future work could learn more from core RL research to resolve generic (e.g. sparse reward) and KG-
specific learning challenges

M-walk: Learning to Walk over Graphs Using Monte Carlo Tree Search (Shen et. al. 2018)
Reinforcement Knowledge Graph Reasoning for Explainable Recommendation (Xian et. al. 2019)

Collaborative Policy Leaning for Open Knowledge Graph Reasoning (Fu et. al. 2019)

Path Reasoning over Knowledge Graph: A Multi-Agent and Reinforcement Learning Based Method (Li et. al. 2019)
Reinforcement Learning Based Meta-Path Discovery in Large-Scale Heterogeneous Information Networks (Wan et. al. 2020)
Reasoning Like Human: Hierarchical Reinforcement Learning for Knowledge Graph Reasoning (Wan et. al. 2020)






