

Reinforcement Learning for Knowledge Graph Reasoning Knowledge Connexions Conference 2020

Victoria Lin Senior Research Scientist, Salesforce AI Research Dec 2, 2020

WictoriaLinML

TRAILMAP

Knowledge Graph Search

Search:

Look up for facts that exist in the knowledge graph via a formal query language (e.g. SPARQL)

Inference/Reasoning:

Derive additional knowledge given existing facts

.

Inference/Reasoning:

Derive additional knowledge given existing facts

Inference/Reasoning:

Reasoning is a core problem for KGs as most often it is impossible to curate and store all facts in a KG.

Derive additional knowledge given existing facts

- Knowledge Graph Embeddings
- Path Ranking Algorithm (PRA)

Sequential Decision Making

Knowledge Graph Reasoning

- Knowledge Graph Embeddings
- Path Ranking Algorithm (PRA)
- **Reinforcement Learning**

NTN (Socher et. al. 2013), DistMult (Yang et al. 2015), ComplEx (Trouillon et al. 2016), ConvE (Dettmers et al. 2018).

Model	Scoring Function $\psi_r(\mathbf{e}_s, \mathbf{e}_o)$	Relation Parameters	Space Complexity
SE (Bordes et al. 2014)	$\left\ \mathbf{W}_{r}^{L}\mathbf{e}_{s}-\mathbf{W}_{r}^{R}\mathbf{e}_{o} ight\ _{p}$	$\mathbf{W}_{r}^{L},\mathbf{W}_{r}^{R}\in\mathbb{R}^{k imes k}$	$\mathcal{O}(n_e k + n_r k^2)$
TransE (Bordes et al. 2013a)	$\ \mathbf{e}_s + \mathbf{r}_r - \mathbf{e}_o\ _p$	$\mathbf{r}_r \in \mathbb{R}^k$	$\mathcal{O}(n_e k + n_r k)$
DistMult (Yang et al. 2015)	$\langle {f e}_s, {f r}_r, {f e}_o angle$ r	$\mathbf{r}_r \in \mathbb{R}^k$	$\mathcal{O}(n_e k + n_r k)$
ComplEx (Trouillon et al. 2016)	$\langle {f e}_s, {f r}_r, {f e}_o angle$	$\mathbf{r}_r \in \mathbb{C}^k$	$\mathcal{O}(n_e k + n_r k)$
ConvE	$f(\operatorname{vec}(f([\overline{\mathbf{e}_s};\overline{\mathbf{r}_r}]*\omega))\mathbf{W})\mathbf{e}_o$	$\mathbf{r}_r \in \mathbb{R}^{k'}$	$\mathcal{O}(n_e k + n_r k')$

Model	Scoring Function $\psi_r(\mathbf{e}_s, \mathbf{e}_o)$	Relation Parameters	Space Complexity
SE (Bordes et al. 2014)	$\left\ \mathbf{W}_{r}^{L}\mathbf{e}_{s}-\mathbf{W}_{r}^{R}\mathbf{e}_{o} ight\ _{p}$	$\mathbf{W}_{r}^{L},\mathbf{W}_{r}^{R}\in\mathbb{R}^{k imes k}$	$\mathcal{O}(n_e k + n_r k^2)$
TransE (Bordes et al. 2013a)	$\ \mathbf{e}_s + \mathbf{r}_r - \mathbf{e}_o\ _p$	$\mathbf{r}_r \in \mathbb{R}^k$	$\mathcal{O}(n_e k + n_r k)$
DistMult (Yang et al. 2015)	$\langle {f e}_s, {f r}_r, {f e}_o angle$,	$\mathbf{r}_r \in \mathbb{R}^k$	$\mathcal{O}(n_e k + n_r k)$
ComplEx (Trouillon et al. 2016)	$\langle {f e}_s, {f r}_r, {f e}_o angle$	$\mathbf{r}_r \in \mathbb{C}^k$	$\mathcal{O}(n_e k + n_r k)$
ConvE	$f(\operatorname{vec}(f([\overline{\mathbf{e}_s};\overline{\mathbf{r}_r}]*\omega))\mathbf{W})\mathbf{e}_o$	$\mathbf{r}_r \in \mathbb{R}^{k'}$	$\mathcal{O}(n_e k + n_r k')$

ConvE: Convolutional 2D Knowledge Graph Embeddings

ConvE: Convolutional 2D Knowledge Graph Embeddings

ConvE: Convolutional 2D Knowledge Graph Embeddings

Tab 1. NTN KB fact inference performance on the WordNet and Freebase benchmarks (Socher et. al. 2013)

- · Lack interpretability
- Does not perform well for rare/unseen entities

- Knowledge Graph Embeddings
- Path Ranking Algorithm (PRA) **RL**
- **Reinforcement Learning**

Path Ranking Algorithm

$$P = R_1 \dots R_\ell$$

Relational Retrieval Using a Combination of Path-Constrained Random Walks. Lao and Cohen 2010. Random Walk Inference and Learning in A Large-Scale Knowledge Base. Lao and Cohen 2011.

Finding Inference Paths

- Exhaustive (Lao and Cohen 2010) •
 - Obtaining all paths connecting e_1 and e_2 (dynamic programming)

Relational Retrieval Using a Combination of Path-Constrained Random Walks. Lao and Cohen 2010. Random Walk Inference and Learning in A Large-Scale Knowledge Base. Lao and Cohen 2011.

Finding Inference Paths

- Exhaustive (Lao and Cohen 2010)
 - Obtaining all paths connecting e_1 and e_2 (dynamic programming) •
- Data-driven (Lao and Cohen 2011)
 - Identifying only paths that are potentially useful for an inference task •
 - Any node e visited during path search must be supported by at least a fraction α of • seed entities s_i seen during training
 - Any path P must retrieve at least one target entity t_i on the training set

Relational Retrieval Using a Combination of Path-Constrained Random Walks. Lao and Cohen 2010. Random Walk Inference and Learning in A Large-Scale Knowledge Base. Lao and Cohen 2011.

Finding Inference Paths

- Reinforcement Learning (Xiong et al. 2018)
 - •
 - maximum number of search steps.
 - Hybrid reward

 $r_{\text{GLOBAL}} = \begin{cases} +1, & \text{if the path reaches } e_{target} & r_{\text{EFF}} \\ -1, & \text{otherwise} \end{cases}$

Supervised policy learning and retraining with reward

Learn a policy based agent to sample the most informative paths between e_1 and e_2

• Starting from e_1 , the agent uses a policy network to pick the most promising relation to extend its path at each step until it reaches the target entity e_2 , or has reached a

FICIENCY =
$$\frac{1}{length(p)}$$
 $r_{\text{DIVERSITY}} = -\frac{1}{|F|} \sum_{i=1}^{|F|} cos(\mathbf{p}, \mathbf{p}_i)$

Path Ranking Algorithm

- - Explainable Performs well for $e_s \bigoplus \stackrel{r_q?}{\longrightarrow} e_t$ queries
 - · Can work for rare/unseen entities as reasoning is based on path features
 - Inefficient for $e_s \longrightarrow ?$ queries

- Knowledge Graph Embeddings
- Path Ranking Algorithm (PRA)
- Sequential Decision Making

Sequential decision making

Tom Hanks

MINERVA (Das et al. 2018); MINERVA + Reward Shaping (Lin et al. 2018)

 e_{s}

Reinforcement Learning FrameworkEnvironmentStateActionTransitionReward

Go for A Walk And Arrive at the Answer: Reasoning Over Paths in Knowledge Bases using Reinforcement Learning (Das et al. 2018)

 A_t

Go for A Walk And Arrive at the Answer: Reasoning Over Paths in Knowledge Bases using Reinforcement Learning (Das et al. 2018)

 A_t

Action space: All nodes with incoming edges from e_s in the graph

Reinforcement Learning Framework State Transition Environment Reward Action

Reinforcement Learning Framework Environment State Transition Reward Action

$$R_b(s_T) = \mathbf{1}\{(e_s, r_q, e_T) \in G\}$$

$\pi_{\Theta}(a_t \mid s_t)$ Policy function

Go for A Walk And Arrive at the Answer: Reasoning Over Paths in Knowledge Bases using Reinforcement Learning (Das et al. 2018)

Policy Gradient

 e_t^2

•

 $e_t^{N_t}$

 r_t^1

 r_t^2

 $r_t^{N_t}$

 $\pi_{\Theta}(a_t^2 \,|\, s_t)$

 $\pi_{\Theta}(a_t^{N_t} | s_t) \quad a_t^i = (r_t^i, e_t^i)$

REINFORCETraining

REINFORCE (Williams, 1992)

REINFORCETraining

Sparse Reward

Unobserved facts

Unobserved facts

Reward Shaping

False positive (spurious) paths (1) (2)

Overfit to the spurious paths

Intuition: avoid sticking to past actions that had received rewards

Multi-Hop Knowledge Graph Reasoning with Reward Shaping (Lin et. al. 2018)

Intuition: avoid sticking to

Multi-Hop Knowledge Graph Reasoning with Reward Shaping (Lin et. al. 2018)

Randomly offset the

Multi-Hop Knowledge Graph Reasoning with Reward Shaping (Lin et. al. 2018)

Randomly offset the

Multi-Hop Knowledge Graph Reasoning with Reward Shaping (Lin et. al. 2018)

Experiment Setup

KG Benchmarks

Name	# Ent.	# Rel.	# Fact	# Degree Avg	# Degree Median
Kinship	104	25	8,544	85.15	82
UMLS	135	46	5,216	38.63	28
FB15k-237	14,505	237	272,115	19.74	14
WN18RR	40,945	11	86,835	2.19	2
NELL-995	75,492	200	154,213	4.07	1

Multi-Hop Knowledge Graph Reasoning with Reward Shaping (Lin et. al. 2018)

Decreasing connectivity

Main Results

Main Results

Interpretable Results

Interpretable Results

- · Return multiple predicted target entities with best-first search
- Can resolve $e_s \bigoplus \stackrel{r_q?}{\longrightarrow} e_t$ queries

Open Source: https://github.com/salesforce/MultiHopKG

- reasoning paths while being time and space efficient
- Our work combines policy network with KG embedding based reward shaping is the first **based approaches** on multiple benchmarks

Multi-Hop Knowledge Graph Reasoning with Reward Shaping. Xi Victoria Lin, Richard Socher and Caiming Xiong. EMNLP 2018.

specific learning challenges

M-walk: Learning to Walk over Graphs Using Monte Carlo Tree Search (Shen et. al. 2018) Reinforcement Knowledge Graph Reasoning for Explainable Recommendation (Xian et. al. 2019) Collaborative Policy Leaning for Open Knowledge Graph Reasoning (Fu et. al. 2019) Path Reasoning over Knowledge Graph: A Multi-Agent and Reinforcement Learning Based Method (Li et. al. 2019) Reinforcement Learning Based Meta-Path Discovery in Large-Scale Heterogeneous Information Networks (Wan et. al. 2020) Reasoning Like Human: Hierarchical Reinforcement Learning for Knowledge Graph Reasoning (Wan et. al. 2020)

• Knowledge graph reasoning is critical for KG-based applications as KGs are intrinsically incomplete

(Deep) reinforcement learning provides a strong family of algorithms for learning informative

sequential multi-hop reasoning approach that matches the performance of KG embedding

• Future work could learn more from core RL research to resolve generic (e.g. sparse reward) and KG-

