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Abstract

Word embeddings derived from human-
generated corpora inherit strong gender bias
which can be further amplified by downstream
models. Some commonly adopted debiasing
approaches, including the seminal Hard
Debias algorithm (Bolukbasi et al., 2016),
apply post-processing procedures that project
pre-trained word embeddings into a subspace
orthogonal to an inferred gender subspace.
We discover that semantic-agnostic corpus
regularities such as word frequency captured
by the word embeddings negatively impact
the performance of these algorithms. We
propose a simple but effective technique,
Double-Hard Debias, which purifies the word
embeddings against such corpus regularities
prior to inferring and removing the gender
subspace. Experiments on three bias miti-
gation benchmarks show that our approach
preserves the distributional semantics of the
pre-trained word embeddings while reducing
gender bias to a significantly larger degree
than prior approaches.

1 Introduction

Despite widespread use in natural language pro-
cessing (NLP) tasks, word embeddings have been
criticized for inheriting unintended gender bias
from training corpora. Bolukbasi et al. (2016) high-
lights that in word2vec embeddings trained on the
Google News dataset (Mikolov et al., 2013a), “pro-
grammer” is more closely associated with “man”
and “homemaker” is more closely associated with
“woman”. Such gender bias also propagates to
downstream tasks. Studies have shown that coref-
erence resolution systems exhibit gender bias in
predictions due to the use of biased word embed-
dings (Zhao et al., 2018a; Rudinger et al., 2018).
Given the fact that pre-trained word embeddings

∗This research was conducted during the author’s intern-
ship at Salesforce Research.

have been integrated into a vast number of NLP
models, it is important to debias word embeddings
to prevent discrimination in NLP systems.

To mitigate gender bias, prior work have
proposed to remove the gender component
from pre-trained word embeddings through post-
processing (Bolukbasi et al., 2016), or to compress
the gender information into a few dimensions of the
embedding space using a modified training scheme
(Zhao et al., 2018b; Kaneko and Bollegala, 2019).
We focus on post-hoc gender bias mitigation for
two reasons: 1) debiasing via a new training ap-
proach is more computationally expensive; and 2)
pre-trained biased word embeddings have already
been extensively adopted in downstream NLP prod-
ucts and post-hoc bias mitigation presumably leads
to less changes in the model pipeline since it keeps
the core components of the original embeddings.

Existing post-processing algorithms, including
the seminal Hard Debias (Bolukbasi et al., 2016),
debias embeddings by removing the component
that corresponds to a gender direction as defined
by a list of gendered words. While Bolukbasi et al.
(2016) demonstrates that such methods alleviate
gender bias in word analogy tasks, Gonen and Gold-
berg (2019) argue that the effectiveness of these
efforts is limited, as the gender bias can still be
recovered from the geomrtry of the debiased em-
beddings.

We hypothesize that it is difficult to isolate
the gender component of word embeddings in
the manner employed by existing post-processing
methods. For example, Gong et al. (2018); Mu and
Viswanath (2018) show that word frequency signif-
icantly impact the geometry of word embeddings.
Consequently, popular words and rare words clus-
ter in different subregions of the embedding space,
despite the fact that words in these clusters are not
semantically similar. This can degrade the ability
of component-based methods for debiasing gender.



(a) Change the frequency of “boy”. (b) Change the frequency of “daughter”.

Figure 1: ∆ of cosine similarities between gender difference vectors before / after adjusting the frequency of word
w. When the frequency of w changes, the cosine similarities between the gender difference vector (−→v ) for w and
other gender difference vectors exhibits a large change. This demonstrates that frequency statistics for w have a
strong influence on the the gender direction represented by −→v .

Specifically, recall that Hard Debias seeks to
remove the component of the embeddings corre-
sponding to the gender direction. The important
assumption made by Hard Debias is that we can
effectively identify and isolate this gender direc-
tion. However, we posit that word frequency in
the training corpora can twist the gender direc-
tion and limit the effectiveness of Hard Debias.

To this end, we propose a novel debiasing al-
gorithm called Double-Hard Debias that builds
upon the existing Hard Debias technique. It con-
sists of two steps. First, we project word embed-
dings into an intermediate subspace by subtract-
ing component(s) related to word frequency. This
mitigates the impact of frequency on the gender
direction. Then we apply Hard Debias to these pu-
rified embeddings to mitigate gender bias. Mu and
Viswanath (2018) showed that typically more than
one dominant directions in the embedding space en-
code frequency features. We test the effect of each
dominant direction on the debiasing performance
and only remove the one(s) that demonstrated the
most impact.

We evaluate our proposed debiasing method us-
ing a wide range of evaluation techniques. Accord-
ing to both representation level evaluation (WEAT
test (Caliskan et al., 2017), the neighborhood met-
ric (Gonen and Goldberg, 2019)) and downstream
task evaluation (coreference resolution (Zhao et al.,
2018a)), Double-Hard Debias outperforms all pre-

vious debiasing methods. We also evaluate the
functionality of debiased embeddings on several
benchmark datasets to demonstrate that Double-
Hard Debias effectively mitigates gender bias with-
out sacrificing the quality of word embeddings1.

2 Motivation

Current post-hoc debiasing methods attempt to re-
duce gender bias in word embeddings by subtract-
ing the component associated with gender from
them. Identifying the gender direction in the word
embedding space requires a set of gender word
pairs, P , which consists of “she & he”, “daughter
& son”, etc. For every pair, for example “boy &
girl”, the difference vector of the two embeddings
is expected to approximately capture the gender
direction:

−→v boy,girl = −→w boy −−→w girl (1)

Bolukbasi et al. (2016) computes the first principal
component of ten such difference vectors and use
that to define the gender direction.2

Recent works (Mu and Viswanath, 2018; Gong
et al., 2018) show that word frequency in a training

1Code and data are available at https://github.
com/uvavision/Double-Hard-Debias.git

2The complete definition of P is: “woman & man”, “girl &
boy”, “she & he”, “mother & father”, “daughter & son”, “gal
& guy”, “female & male”, “her & his”, “herself & himself”,
and “Mary & John” (Bolukbasi et al., 2016).

https://github.com/uvavision/Double-Hard-Debias.git
https://github.com/uvavision/Double-Hard-Debias.git


corpus can degrade the quality of word embeddings.
By carefully removing such frequency features, ex-
isting word embeddings can achieve higher per-
formance on several benchmarks after fine-tuning.
We hypothesize that such word frequency statistics
also interferes with the components of the word em-
beddings associated with gender. In other words,
frequency-based features learned by word embed-
ding algorithms act as harmful noise in the previ-
ously proposed debiasing techniques.

To verify this, we first retrain GloVe (Pennington
et al., 2014) embeddings on the one billion English
word benchmark (Chelba et al., 2013) following
previous work (Zhao et al., 2018b; Kaneko and Bol-
legala, 2019). We obtain ten difference vectors for
the gendered pairs in P and compute pairwise co-
sine similarity. This gives a similarity matrix S in
which Spi,pj denotes the cosine similarity between
difference vectors −→v pairi and −→v pairj .

We then select a specific word pair, e.g. “boy”
& “girl”, and augment the corpus by sampling sen-
tences containing the word “boy” twice. In this
way, we produce a new training corpus with altered
word frequency statistics for “boy”. The context
around the token remains the same so that changes
to the other components are negligible. We retrain
GloVe with this augmented corpus and get a set of
new offset vectors for the gendered pairs P . We
also compute a second similarity matrix S ′ where
S ′pi,pj denotes the cosine similarity between differ-
ence vectors −→v ′pairi and −→v ′pairj .

By comparing these two similarity matrices, we
analyze the effect of changing word frequency
statistics on gender direction. Note that the offset
vectors are designed for approximating the gender
direction, thus we focus on the changes in offset
vectors. Because statistics were altered for “boy”,
we focus on the difference vector −→v boy,girl and
make two observations. First, the norm of−→v boy,girl

has a 5.8% relative change while the norms of other
difference vectors show much smaller changes. For
example, the norm of −→v man,woman only changes
by 1.8%. Second, the cosine similarities between
−→v boy,girl and other difference vectors also show
more significant change, as highlighted by the red
bounding box in Figure 1a. As we can see, the
frequency change of “boy” leads to deviation of
the gender direction captured by −→v boy,girl. We
observe similar phenomenon when we change the
frequency of the word “daughter” and present these
results in Figure 1b.

Based on these observations, we conclude that
word frequency plays an important role in gender
debiasing despite being overlooked by previous
works.

3 Method

In this section, we first summarize the terminology
that will be used throughout the rest of the paper,
briefly review the Hard Debias method, and provide
background on the neighborhood evaluation metric.
Then we introduce our proposed method: Double-
Hard Debias.

3.1 Preliminary Definitions

Let W be the vocabulary of the word embeddings
we aim to debias. The set of word embeddings
contains a vector −→w ∈ R

n for each word w ∈
W . A subspace B is defined by k orthogonal unit
vectors B = {b1, . . . , bk} ∈ Rd. We denote the
projection of vector v on B by

vB =
k∑

j=1

(v · bj)bj . (2)

Following (Bolukbasi et al., 2016), we assume
there is a set of gender neutral words N ⊂ W ,
such as “doctor” and “teacher”, which by defini-
tion are not specific to any gender. We also as-
sume a pre-defined set of nmale-female word pairs
D1, D2, . . . , Dn ⊂W , where the main difference
between each pair of words captures gender.

Hard Debias. The Hard Debias algorithm first
identifies a subspace that captures gender bias. Let

µi :=
∑
w∈Di

−→w/|Di|. (3)

The bias subspace B is the first k (≥ 1) rows of
SVD(C), where

C :=
m∑
i=1

∑
w∈Di

(−→w − µi)T (−→w − µi)/|Di| (4)

Following the original implementation of Boluk-
basi et al. (2016), we set k = 1. As a result the
subspace B is simply a gender direction.3

Hard Debias then neutralizes the word embed-
dings by transforming each−→w such that every word

3Bolukbasi et al. (2016) normalize all embeddings. How-
ever, we found it is unnecessary in our experiments. This is
also mentioned in Ethayarajh et al. (2019)



Figure 2: Clustering accuracy after projecting out D-th
dominating direction and applying Hard Debias. Lower
accuracy indicates less bias.

w ∈ N has zero projection in the gender subspace.
For each word w ∈ N , we re-embed −→w :

−→w := −→w −−→wB (5)

Neighborhood Metric. The Neighborhood
Metric proposed by (Gonen and Goldberg, 2019)
is a bias measurement that does not rely on any
specific gender direction. To do so it looks into
similarities between words. The bias of a word is
the proportion of words with the same gender bias
polarity among its nearest neighboring words.

We selected k of the most biased male and fe-
males words according to the cosine similarity of
their embedding and the gender direction computed
using the word embeddings prior to bias mitigation.
We use Wm and Wf to denote the male and fe-
male biased words, respectively. For wi ∈ Wm,
we assign a ground truth gender label gi = 0.
For wi ∈ Wf , gi = 1. Then we run KMeans
(k = 2) to cluster the embeddings of selected words
ĝi = KMeans(−→w i), and compute the alignment
score a with respect to the assigned ground truth
gender labels:

a =
1

2k

2k∑
i=1

1[ĝi == gi] (6)

We set a = max(a, 1− a). Thus, a value of 0.5 in
this metric indicates perfectly unbiased word em-
beddings (i.e. the words are randomly clustered),
and a value closer to 1 indicates stronger gender
bias.

3.2 Double-Hard Debiasing
According to Mu and Viswanath (2018), the most
statistically dominant directions of word embed-
dings encode word frequency to a significant ex-
tent. Mu and Viswanath (2018) removes these fre-
quency features by centralizing and subtracting
components along the top D dominant directions

Algorithm 1: Double-Hard Debias.
Input :Word embeddings:

{−→w ∈ Rd, w ∈ W}
Male biased words set: Wm

Female biased words set: Wf

1 Sdebias = []
2 Decentralize −→w : µ← 1

|V|
∑

w∈V
−→w , for each

−→w ∈ W , w̃ ← −→w − µ;
3 Compute principal components by PCA:
{u1 . . .ud} ← PCA({w̃, w ∈ W});

4 //discover the frequency directions
5 for i = 1 to d do
6 w′m ← w̃m − (uT

i wm)ui;
7 w′f ← w̃f − (uT

i wf )ui;
8 ŵm ← HardDebias(w′m);
9 ŵf ← HardDebias(w′f );

10 output = KMeans([ŵmŵf ]);
11 a = eval(output, Wm, Wf );
12 Sdebias.append(a);
13 end
14 k = arg mini Sdebias;
15 // remove component on frequency direction
16 w′ ← w̃ − (uT

kw)uk;
17 // remove components on gender direction
18 ŵ ← HardDebias(w′);

Output :Debiased word embeddings:
{ŵ ∈ Rd, w ∈ W}

from the original word embeddings. These post-
processed embedddings achieve better performance
on several benchmark tasks, including word sim-
ilarity, concept categorization, and word analogy.
It is also suggested that setting D near d/100 pro-
vides maximum benefit, where d is the dimension
of a word embedding.

We speculate that most the dominant directions
also affect the geometry of the gender space. To
address this, we use the aforementioned clustering
experiment to identify whether a direction contains
frequency features that alter the gender direction.

More specifically, we first pick the top biased
words (500 male and 500 female) identified using
the original GloVe embeddings. We then apply
PCA to all their word embeddings and take the
top principal components as candidate directions to
drop. For every candidate direction u, we project
the embeddings into a space that is orthogonal to
u. In this intermediate subspace, we apply Hard
Debias and get debiased embeddings. Next, we
cluster the debiased embeddings of these words



and compute the gender alignment accuracy (Eq. 6).
This indicates whether projecting away direction u
improves the debiasing performance. Algorithm 1
shows the details of our method in full.

We found that for GloVe embeddings pre-trained
on Wikipedia dataset, elimination of the projection
along the second principal component significantly
decreases the clustering accuracy. This translates to
better debiasing results, as shown in Figure 2. We
further demonstrate the effectiveness of our method
for debaising using other evaluation metrics in Sec-
tion 4.

4 Experiments

In this section, we compare our proposed method
with other debiasing algorithms and test the func-
tionality of these debiased embeddings on word
analogy and concept categorization task. Exper-
imental results demonstrate that our method ef-
fectively reduces bias to a larger extent without
degrading the quality of word embeddings.

4.1 Dataset
We use 300-dimensional GloVe (Pennington et al.,
2014) 4 embeddings pre-trained on the 2017 Jan-
uary dump of English Wikipedia5, containing
322, 636 unique words. To identify the gender
direction, we use 10 pairs of definitional gender
words compiled by (Bolukbasi et al., 2016)6.

4.2 Baselines
We compare our proposed method against the fol-
lowing baselines:

GloVe: the pre-trained GloVe embeddings on
Wikipedia dataset described in 4.1. GloVe is widely
used in various NLP applications. This is a non-
debiased baseline for comparision.

GN-GloVe: We use debiased Gender-Neutral GN-
GloVe embeddings released by the original authors
(Zhao et al., 2018b). GN-GloVe restricts gender in-
formation in certain dimensions while neutralizing
the rest dimensions.

GN-GloVe(wa): We exclude the gender dimen-
sions from GN-GloVe. This baseline tries to com-
pletely remove gender.

GP-GloVe: We use debiased embeddings released
by the original authors (Kaneko and Bollegala,

4Experiments on Word2Vec are included in the appendix.
5https://github.com/uclanlp/gn_glove
6https://github.com/tolga-b/debiaswe

2019). Gender-preserving Debiasing attempts to
preserve non-discriminative gender information,
while removing stereotypical gender bias.

GP-GN-GloVe:: This baseline applies Gender-
preserving Debiasing on already debaised GN-
GloVe embeddings. We also use debiased embed-
dings provided by authors.

Hard-GloVe: We apply Hard Debias introduced
in (Bolukbasi et al., 2016) on GloVe embeddings.
Following the implementation provided by original
authors, we debias netural words and preserve the
gender specific words.

Strong Hard-GloVe: A variant of Hard De-
bias where we debias all words instead of avoiding
gender specific words. This seeks to entirely re-
move gender from GloVe embeddings.

Double-Hard GloVe: We debias the pre-trained
GloVe embeddings by our proposed Double-Hard
Debias method.

4.3 Evaluation of Debiasing Performance

We demonstrate the effectiveness of our debiasing
method for downstream applications and according
to general embedding level evaluations.

4.3.1 Debiasing in Downstream Applications
Coreference Resolution. Coreference resolution
aims at identifying noun phrases referring to the
same entity. Zhao et al. (2018a) identified gender
bias in modern coreference systems, e.g. “doctor”
is prone to be linked to “he”. They also introduce a
new benchmark dataset WinoBias, to study gender
bias in coreference systems.

WinoBias provides sentences following two pro-
totypical templates. Each type of sentences can be
divided into a pro-stereotype (PRO) subset and a
antistereotype (ANTI) subset. In the PRO subset,
gender pronouns refer to professions dominated by
the same gender. For example, in sentence “The
physician hired the secretary because he was over-
whelmed with clients.”, “he” refers to “physician”,
which is consistent with societal stereotype. On the
other hand, the ANTI subset consists of same sen-
tences, but the opposite gender pronouns. As such,
“he” is replaced by “she” in the aforementioned
example. The hypothesis is that gender cues may
distract a coreference model. We consider a system
to be gender biased if it performs better in pro-
stereotypical scenarios than in anti-stereotypical
scenarios.

https://github.com/uclanlp/gn_glove
https://github.com/tolga-b/debiaswe


Embeddings OntoNotes PRO-1 ANTI-1 Avg-1 |Diff-1 | PRO-2 ANTI-2 Avg-2 |Diff-2 |

GloVe 66.5 77.7 48.2 62.9 29.0 82.7 67.5 75.1 15.2

GN-GloVe 66.1 68.4 56.5 62.5 12.0 78.2 71.3 74.7 6.9
GN-GloVe(wa) 66.4 66.7 56.6 61.6 10.2 79.0 72.3 75.7 6.7

GP-GloVe 66.1 72.0 52.0 62.0 20.0 78.5 70.0 74.3 8.6
GP-GN-GloVe 66.3 70.0 54.5 62.0 15.0 79.9 70.7 75.3 9.2

Hard-GloVe 66.2 72.3 52.7 62.6 19.7 80.6 78.3 79.4 2.3
Strong Hard-GloVe 66.0 69.0 58.6 63.8 10.4 82.2 78.6 80.4 3.6

Double-Hard GloVe 66.4 66.0 58.3 62.2 7.7 85.4 84.5 85.0 0.9

Table 1: F1 score (%) of coreference systems on OntoNotes test set and WinoBias dataset. |Diff | represents the
performance gap between pro-stereotype (PRO) subset and anti-stereotype (ANTI) subset. Coreference system
trained on our Double-Hard GloVe embeddings has the smallest |Diff | values, suggesting less gender bias.

We train an end-to-end coreference resolution
model (Lee et al., 2017) with different word embed-
dings on OntoNotes 5.0 training set and report the
performance on WinoBias dataset. Results are pre-
sented in Table1. Note that absolute performance
difference (Diff) between the PRO set and ANTI
set connects with gender bias. A smaller Diff value
indicates a less biased coreference system. We
can see that on both types of sentences in Wino-
Bias, Double-Hard GloVe achieves the smallest
Diff compared to other baselines. This demon-
strates the efficacy of our method. Meanwhile,
Double-Hard GloVe maintains comparable perfor-
mance as GloVe on OntoNotes test set, showing
that our method preserves the utility of word em-
beddings. It is also worth noting that by reducing
gender bias, Double-Hard GloVe can significantly
improve the average performance on type-2 sen-
tences, from 75.1% (GloVe) to 85.0%.

4.3.2 Debiasing at Embedding Level
The Word Embeddings Association Test
(WEAT). WEAT is a permutation test used to
measure the bias in word embeddins. We consider
male names and females names as attribute sets
and compute the differential association of two sets
of target words7 and the gender attribute sets. We
report effect sizes (d) and p-values (p) in Table2.
The effect size is a normalized measure of how
separated the two distributions are. A higher value
of effect size indicates larger bias between target
words with regard to gender. p-values denote if
the bias is significant. A high p-value (larger than
0.05) indicates the bias is insignificant. We refer
readers to Caliskan et al. (2017) for more details.

7All word lists are from Caliskan et al. (2017). Because
GloVeembeddings are uncased, we use lower cased people
names and replace “bill” with “tom” to avoid ambiguity.

As shown in Table 2, across different target
words sets, Double-Hard GloVe consistently out-
performs other debiased embeddings. For Ca-
reer & Family and Science & Arts, Double-Hard
GloVe reaches the lowest effect size, for the latter
one, Double-Hard GloVe successfully makes the
bias insignificant (p-value > 0.05). Note that in
WEAT test, some debiasing methods run the risk
of amplifying gender bias, e.g. for Math & Arts
words, the bias is significant in GN-GloVe while it
is insignificant in original GloVe embeddings. Such
concern does not occur in Double-Hard GloVe.

Neighborhood Metric. (Gonen and Goldberg,
2019) introduces a neighborhood metric based on
clustering. As described in Sec 3.1, We take the
top k most biased words according to their co-
sine similarity with gender direction in the original
GloVe embedding space8. We then run k-Means
to cluster them into two clusters and compute the
alignment accuracy with respect to gender, results
are presented in Table 3. We recall that in this met-
ric, a accuracy value closer to 0.5 indicates less
biased word embeddings.

Using the original GloVe embeddings, k-Means
can accurately cluster selected words into a male
group and a female group, suggesting the presence
of a strong bias. Hard Debias is able to reduce
bias in some degree while other baselines appear
to be less effective. Double-Hard GloVe achieves
the lowest accuracy across experiments clustering
top 100/500/1000 biased words, demonstrating that
the proposed technique effectively reduce gender
bias. We also conduct tSNE (van der Maaten and
Hinton, 2008) projection for all baseline embed-

8To be fair, we exclude all gender specific words used in
debiasing, so Hard-GloVe and Strong Hard-GloVe have same
acurracy performance in Table 3



Embeddings Career & Family Math & Arts Science & Arts
d p d p d p

GloVe 1.81 0.0 0.55 0.14 0.88 0.04

GN-GloVe 1.82 0.0 1.21 6e−3 1.02 0.02
GN-GloVe(wa) 1.76 0.0 1.43 1e−3 1.02 0.02

GP-GloVe 1.81 0.0 0.87 0.04 0.91 0.03
GP-GN-GloVe 1.80 0.0 1.42 1e−3 1.04 0.01

Hard-GloVe 1.55 2e−4 0.07 0.44 0.16 0.62
Strong Hard-GloVe 1.55 2e−4 0.07 0.44 0.16 0.62

Double-Hard GloVe 1.53 2e−4 0.09 0.57 0.15 0.61

Table 2: WEAT test of embeddings before/after Debiasing. The bias is insignificant when p-value, p > 0.05. Lower
effective size (d) indicates less gender bias. Significant gender bias related to Career & Family and Science & Arts
words is effectively reduced by Double-Hard GloVe. Note for Math & Arts words, gender bias is insignificant in
original GloVe.

dings. As shown in Figure 3, original non-debiased
GloVe embeddings are clearly projected to differ-
ent regions. Double-Hard GloVe mixes up male
and female embeddings to the maximum extent
compared to other baselines, showing less gender
information can be captured after debiasing.

Embeddings Top 100 Top 500 Top 1000

GloVe 100.0 100.0 100.0

GN-GloVe 100.0 100.0 99.9
GN-GloVe(wa) 100.0 99.7 88.5

GP-GloVe 100.0 100.0 100.0
GP-GN-GloVe 100.0 100.0 99.4

(Strong) Hard GloVe 59.0 62.1 68.1

Double-Hard GloVe 51.5 55.5 59.5

Table 3: Clustering Accuracy (%) of top 100/500/1000
male and female words. Lower accuracy means less
gender cues can be captured. Double-Hard GloVe con-
sistently achieves the lowest accuracy.

4.4 Analysis of Retaining Word Semantics

Word Analogy. Given three words A, B and C,
the analogy task is to find wordD such that “A is to
B as C is to D”. In our experiments, D is the word
that maximize the cosine similarity between D and
C − A + B. We evaluate all non-debiased and
debiased embeddings on the MSR (Mikolov et al.,
2013c) word analogy task, which contains 8000
syntactic questions, and on a second Google word
analogy (Mikolov et al., 2013a) dataset that con-
tains 19, 544 (Total) questions, including 8, 869
semantic (Sem) and 10, 675 syntactic (Syn) ques-
tions. The evaluation metric is the percentage of
questions for which the correct answer is assigned

the maximum score by the algorithm. Results are
shown in Table4. Double-Hard GloVe achieves
comparable good results as GloVe and slightly out-
performs some other debiased embeddings. This
proves that Double-Hard Debias is capable of pre-
serving proximity among words.

Concept Categorization. The goal of concept
categorization is to cluster a set of words into dif-
ferent categorical subsets. For example, “sandwich”
and “hotdog” are both food and “dog” and “cat”
are animals. The clustering performance is evalu-
ated in terms of purity (Manning et al., 2008) - the
fraction of the total number of the words that are
correctly classified. Experiments are conducted on
four benchmark datasets: the Almuhareb-Poesio
(AP) dataset (Almuhareb, 2006); the ESSLLI 2008
(Baroni et al., 2008); the Battig 1969 set (Battig
and Montague, 1969) and the BLESS dataset (Ba-
roni and Lenci, 2011). We run classical Kmeans
algorithm with fixed k. Across four datasets, the
performance of Double-Hard GloVe is on a par
with GloVe embeddings, showing that the proposed
debiasing method preserves useful semantic infor-
mation in word embeddings. Full results can be
found in Table4.

5 Related Work

Gender Bias in Word Embeddings. Word em-
beddings have been criticized for carrying gender
bias. Bolukbasi et al. (2016) show that word2vec
(Mikolov et al., 2013b) embeddings trained on the
Google News dataset exhibit occupational stereo-
types, e.g. “programmer” is closer to “man” and
“homemaker” is closer to “woman”. More recent
works (Zhao et al., 2019; Kurita et al., 2019; Basta
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Figure 3: tSNE visualization of top 500 most male and female embeddings. Double-Hard GloVe mixes up two
groups to the maximum extent, showing less gender information is encoded.

Embeddings Analogy Concept Categorization
Sem Syn Total MSR AP ESSLI Battig BLESS

GloVe 80.5 62.8 70.8 54.2 55.6 72.7 51.2 81.0

GN-GloVe 77.7 61.6 68.9 51.9 56.9 70.5 49.5 85.0
GN-GloVe(wa) 77.7 61.6 68.9 51.9 56.9 75.0 51.3 82.5

GP-GloVe 80.6 61.7 70.3 51.3 56.1 75.0 49.0 78.5
GP-GN-GloVe 77.7 61.7 68.9 51.8 61.1 72.7 50.9 77.5

Hard-GloVe 80.3 62.5 70.6 54.0 62.3 79.5 50.0 84.5
Strong Hard-GloVe 78.6 62.4 69.8 53.9 64.1 79.5 49.2 84.5

Double-Hard GloVe 80.9 61.6 70.4 53.8 59.6 72.7 46.7 79.5

Table 4: Results of word embeddings on word analogy and concept categorization benchmark datasets. Perfor-
mance (x100) is measured in accuracy and purity, respectively. On both tasks, there is no significant degradation
of performance due to applying the proposed method.

et al., 2019) demonstrate that contextualized word
embeddings also inherit gender bias.

Gender bias in word embeddings also propagate
to downstream tasks, which substantially affects
predictions. Zhao et al. (2018a) show that coref-
erence systems tend to link occupations to their
stereotypical gender, e.g. linking “doctor” to “he”
and “nurse” to “she”. Stanovsky et al. (2019) ob-
serve that popular industrial and academic machine
translation systems are prone to gender biased trans-
lation errors.

Recently, Vig et al. (2020) proposed causal me-
diation analysis as a way to interpret and analyze
gender bias in neural models.

Debiasing Word Embeddings. For contextual-
ized embeddings, existing works propose task-
specific debiasing methods, while in this paper we
focus on more generic ones. To mitigate gender
bias, Zhao et al. (2018a) propose a new training
approach which explicitly restricts gender informa-
tion in certain dimensions during training. While

this method separates gender information from em-
beddings, retraining word embeddings on massive
corpus requires an undesirably large amount of re-
sources. Kaneko and Bollegala (2019) tackles this
problem by adopting an encoder-decoder model to
re-embed word embeddings. This can be applied
to existing pre-trained embeddings, but it still re-
quires train different encoder-decoders for different
embeddings.

Bolukbasi et al. (2016) introduce a more simple
and direct post-processing method which zeros out
the component along the gender direction. This
method reduces gender bias to some degree, how-
ever, Gonen and Goldberg (2019) present a series
of experiments to show that they are far from deliv-
ering gender-neutral embeddings. Our work builds
on top of Bolukbasi et al. (2016). We discover
the important factor – word frequency – that limits
the effectiveness of existing methods. By care-
fully eliminating the effect of word frequency, our
method is able to significantly improve debiasing
performance.



6 Conclusion

We have discovered that simple changes in word
frequency statistics can have an undesirable impact
on the debiasing methods used to remove gender
bias from word embeddings. Though word fre-
quency statistics have until now been neglected in
previous gender bias reduction work, we propose
Double-Hard Debias, which mitigates the nega-
tive effects that word frequency features can have
on debiasing algorithms. We experiment on sev-
eral benchmarks and demonstrate that our Double-
Hard Debias is more effective on gender bias re-
duction than other methods while also preserv-
ing the quality of word embeddings suitable for
the downstream applications and embedding-based
word analogy tasks. While we have shown that
this method significantly reduces gender bias while
preserving quality, we hope that this work encour-
ages further research into debiasing along other
dimensions of word embeddings in the future.
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A Appendices

Text

Text

Figure 4: Clustering accuracy after projecting out D-th
dominating direction and applying Hard Debias. Lower
accuracy indicates less bias.

Embeddings Top 100 Top 500 Top 1000

Word2Vec 100.0 99.3 99.3
Hard-Word2Vec 79.5 74.3 79.8

Double-Hard Word2Vec 71.0 52.3 56.7

Table 5: Clustering Accuracy(%) of top 100/500/1000
male and female words. Lower accuracy means less
gender cues captured. Double-Hard Word2Vec consis-
tently achieves the lowest accuracy.

We also apply Double-Hard Debias on
Word2Vec embeddings (Mikolov et al., 2013b)
which have been widely used by many NLP appli-
cations. As shown in Figure 4, our algorithm is
able to identify that the eighth principal component
significantly affects the debiasing performance.

Similarly, we first project away the identified
direction u from the original Word2Vec embed-
dings and then apply Hard Debias algorithm. We
compare embeddings debiased by our method
with the original Word2Vec embeddings and Hard-
Word2Vec embeddings.

Table 5 reports the experimental result using the
neighborhood metric. Across three experiments
where we cluster top 100/500/1000 male and fe-
male words, Double-Hard Word2Vec consistently
achieves the lowest accuracy . Note that neighbor-
hood metric reflects gender information that can be
captured by the clustering algorithm. Experimental
result validates that our method can further im-
prove Hard Debias algorithm. This is also verified
in Figure 5 where we conduct tSNE visualization
of top 500 male and female embeddings. While the
original Word2Vec embeddings clearly locate sep-
arately into two groups corresponding to different
genders, this phenomenon becomes less obvious
after applying our debiasing method.

We further evaluate the debiasing outcome with
WEAT test. Similar to experiments on GloVe em-
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Embeddings Career & Family Math & Arts Science & Arts
d p d p d p

Word2Vec 1.89 0.0 1.82 0.0 1.57 2e−4

Hard-Word2Vec 1.80 0.0 1.57 7e−5 0.83 0.05

Double-Hard Word2Vec 1.73 0.0 1.51 5e−4 0.68 0.09

Table 6: WEAT test of embeddings before/after Debiasing. The bias is insignificant when p-value, p > 0.05.
Lower effective size (d) indicates less gender bias. Across all target words sets, Double-Hard Word2Vec leads to
the smallest effective size. Specifically, for Science & Arts words, Double-Hard Word2Vec successfully reaches a
bias insignificant state (p = 0.09).

Embeddings Analogy Concept Categorization
Sem Syn Total MSR AP ESSLI Battig BLESS

Word2Vec 24.8 66.5 55.3 73.6 64.5 75.0 46.3 78.9
Hard-Word2Vec 23.8 66.3 54.9 73.5 62.7 75.0 47.1 77.4

Double-Hard Word2Vec 23.5 66.3 54.9 74.0 63.2 75.0 46.5 77.9

Table 7: Results of word embeddings on word analogy and concept categorization benchmark datasets. Perfor-
mance (x100) is measured in accuracy and purity, respectively. On both tasks, there is no significant degradation
of performance due to applying the proposed method.

beddings, we use male names and female names as
attribute sets and analyze the association between
attribute sets and three target sets. We report ef-
fective size and p-value in Table 6. Across three
target sets, Double-Hard Word2Vec is able to con-
sistently reduce the effect size. More importantly,
the bias related to Science & Arts words becomes
insignificant after applying our debiasing method.

To test the functionality of debiased embeddings,
we again conduct experiments on word analogy and
concept categorization tasks. Results are included
in Table 7. We demonstrate that our proposed de-
biasing method brings no significant performance
degradation in these two tasks.

To summarize, experiments on Word2Vec em-
beddings also support our conclusion that the pro-
posed Double-Hard Debiasing reduces gender bias
to a larger degree while is able to maintain the
semantic information in word embeddings.
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Figure 5: tSNE visualization of top 500 most male and
female embeddings. Double-Hard Word2Vec mixes up
two groups to the maximum extent, showing less gen-
der information encoded.


