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Experiment Setup

KG Benchmarks

# Degree # Degree
Avg Median

Name # Ent. # Rel. # Fact

Kinship 104 25 8,544 85.15 82

UMLS 135 46 5,216 38.63 28 Decreasiwg

GEPPRIN 14,505 237 272,115 19.74 14 conmnectivity

VLORER B 40,945 11 86,835 2.19 2

NELL-995 mw&Riie) 200 154,213 4.07 1 v

Evaluation Protocol: MRR (Mean Reciprocal Rank)
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Main Results
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Interpretable Results
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Code: https://github.com/salesforce/MultiHopKG
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Future directions
e | earn better reward shaping functions

* |nvestigate similar techniques for other RL
paradigms (e.g. Q-learning)

e Extend to more complicated structured queries (e.g.
more than one topic entities)

e Extend to natural language QA
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Questions for Future Research

1. One natural question to ask is why a perceivable performance gap exists between the embedding-based
(EB) model and the RL approach using the same EB model as the reward shaping module (slide 51),
especially on FB15k-237 and NELL-995, the two larger and sparser KGs. Since the RL model has full
access to the EB model, why could it still lose information? A possible explanation is that for examples
where the RL models make mistakes, the topic entity and the target answer are not connected within the
specified # hops. Yet our sanity check disproved this — for all examples where only the RL model makes
mistakes the topic entity and the target answer were connected by at least one path. (We did not check
the quality of these paths.) Conjecture: It is possible that the performance loss comes from the difficulty of
RL optimization as it operates over a more complex model space. The RL model + training procedure
have much more hyper-parameters than the EB models.

2. In our experiments, very large action dropout rates (0.9 and 0.95) yield good performance on the dense
KGs (Kinship and UMLS), but the same strategy does not work for sparser KGs. We observed significant
performance drop for FB15k-237, WN18RR and NELL-995 when using very large action dropout rates.
And for WN18NN and NELL-995, action dropout rate > 0.1 hurts performance. It is unclear why
REINFORCE training on the denser KGs can tolerate a larger shift from the actual policy during path
sampling. Conjecture: It seems that the shape of the original policy function ought to be preserved to
some degree during training. For Kinship and UMLS, the average node degrees are 85 and 39. In this
case on average >= 2 edges remains on when we randomly turned off 95% of the edges. Since other
KGs have smaller average node degrees, using a large action dropout rate is equivalent to doing random
exploration most of the time.

3. Does EB models define the cap performance in the one-hop KG query answering set up? Could the tasks
of path finding and learning KG embeddings be joined together in a way s.t. they can improve each other?

4. Our approach can be viewed as a way to explain pre-trained EB models. Are there better ways to do it?
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