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res eo

Knowledge Graph Embeddings

DistMult (Yang et al. 2015), ComplEx (Trouillon et al. 2016), ConvE (Dettmers et al. 2018).

ConvE

Rn

Conv

Linear

·MRR
ConvE 0.957 (max = 1)

Tab 1. ConvE query answering 
performance on the UMLS 
benchmark dataset (Kok and 
Domingos 2007)
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Multi-Hop Reasoning Models
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Multi-Hop Reasoning Models

<END>

MINERVA (Das et al. 2018)
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Multi-Hop Reasoning Models
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Multi-Hop Reasoning Models: Ideal Case
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Proposed Solutions
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Reinforcement Learning Framework
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Policy Gradient
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Policy Gradient
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Action Dropout
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received rewards
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Experiment Setup

Name # Ent. # Rel. # Fact # Degree  
Avg

# Degree 
Median

Kinship 104 25 8,544 85.15 82

UMLS 135 46 5,216 38.63 28

FB15k-237 14,505 237 272,115 19.74 14

WN18RR 40,945 11 86,835 2.19 2

NELL-995 75,492 200 154,213 4.07 1

KG Benchmarks

Decreasing 
connectivity

Evaluation Protocol: MRR (Mean Reciprocal Rank)
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Fig 2. Dev set MRR (x100) comparison
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Main Results
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Code: https://github.com/salesforce/MultiHopKG

Thank 
you!

Future directions 
• Learn better reward shaping functions 
• Investigate similar techniques for other RL 

paradigms (e.g. Q-learning) 
• Extend to more complicated structured queries (e.g. 

more than one topic entities) 
• Extend to natural language QA

https://github.com/salesforce/MultiHopKG


BKI - Error Analysis
FB15k-237 NELL-995UMLS

Ours

ConvE

Fig 4. Dev set top-1 prediction error overlap of ConvE, Ours and 
Ours-RS. The absolute error rate of Ours is shown.

Ours-RS

8.9% 65.9% 25.6%
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Questions for Future Research

1. One natural question to ask is why a perceivable performance gap exists between the embedding-based 
(EB) model and the RL approach using the same EB model as the reward shaping module (slide 51), 
especially on FB15k-237 and NELL-995, the two larger and sparser KGs.  Since the RL model has full 
access to the EB model, why could it still lose information? A possible explanation is that for examples 
where the RL models make mistakes, the topic entity and the target answer are not connected within the 
specified # hops. Yet our sanity check disproved this — for all examples where only the RL model makes 
mistakes the topic entity and the target answer were connected by at least one path. (We did not check 
the quality of these paths.) Conjecture: It is possible that the performance loss comes from the difficulty of 
RL optimization as it operates over a more complex model space. The RL model + training procedure 
have much more hyper-parameters than the EB models. 

2. In our experiments, very large action dropout rates (0.9 and 0.95) yield good performance on the dense 
KGs (Kinship and UMLS), but the same strategy does not work for sparser KGs. We observed significant 
performance drop for FB15k-237, WN18RR and NELL-995 when using very large action dropout rates. 
And for WN18NN and NELL-995, action dropout rate > 0.1 hurts performance. It is unclear why 
REINFORCE training on the denser KGs can tolerate a larger shift from the actual policy during path 
sampling. Conjecture: It seems that the shape of the original policy function ought to be preserved to 
some degree during training. For Kinship and UMLS, the average node degrees are 85 and 39. In this 
case on average >= 2 edges remains on when we randomly turned off 95% of the edges. Since other 
KGs have smaller average node degrees, using a large action dropout rate is equivalent to doing random 
exploration most of the time. 

3. Does EB models define the cap performance in the one-hop KG query answering set up? Could the tasks 
of path finding and learning KG embeddings be joined together in a way s.t. they can improve each other?                                                                                                                                                              

4. Our approach can be viewed as a way to explain pre-trained EB models. Are there better ways to do it?
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